Featured Research

from universities, journals, and other organizations

Scientists Solve Active Site Of Structure Of Enzyme That Produces Nitric Oxide

October 20, 1997
Scripps Research Institute
Scientists at The Scripps Research Institute, along with colleagues at the Cleveland Clinic, have solved the structure of the active site of the enzyme that regulates the activity of nitric oxide, or NO. Researchers predict that NO inhibitors could be used to treat several human diseases.

La Jolla, California. October 17 -- Scientists at The Skaggs Institute forChemical Biology and the Department of Molecular Biology at The Scripps ResearchInstitute, led by Drs. John Tainer and Elizabeth Getzoff, in collaboration witha team led by Dr. Dennis Stuehr at the Cleveland Clinic, have solved thestructure of the active site of the enzyme that regulates the activity of nitricoxide, or NO.

Related Articles

Since NO is an unconventional biological signal whose activitiesrange from blood pressure regulation to antimicrobial defense to nervous systeminformation and memory, understanding the structure of the enzyme that producesit is crucial to designing drugs to turn NO on and off. Scientists predict thatNO inhibitors may be used to treat such diseases as high blood pressure, septicshock, stroke, cancer, and impotence. Given its role in neurotransmission, NOmay have an effect on treating memory disorders and learning.

The paper, "The Structure of Nitric Oxide Synthase Oxygenase Domain andInhibitor Complexes," by Drs. Brian R. Crane, Andrew S. Arvai, Ratan Gachhui,Chaoqun Wu, Dipak K. Ghosh, Elizabeth D. Getzoff, Dennis J. Stuehr, and John A.Tainer, appears in today's issue of Science.

According to Tainer, "Having this structure is the difference betweenworking blind and seeing what you're doing in terms of understanding and drugdesign."

The structure of this key portion of nitric oxide synthase (NOS) helpsresearchers understand not only how NO is produced in the body but also how NOproduction is controlled. Nitric oxide is a small, short-lived, inorganicmolecule that functions in mammals as an essential chemical messenger for manyphysiological processes and as a protective poison against pathogens and cancer.At low concentrations it acts as a signal to control blood pressure, preventblood clotting, transmit nerve impulses in contractile and sensory tissues,process sensory input, form memories, and allow learning.

In contrast, the immune system produces high concentrations of NO andexploits its reactive properties to combat bacteria, intracellular parasites,viruses and tumor cells. Due to its unstable and membrane diffusible nature, NOdiffers from other neurotransmitters and hormones in that it is not regulated bystorage, release or targeted degradation, but rather solely by synthesis.

Because NO acts as a signal in low amounts and a toxin in high amounts,its production is carefully balanced in healthy humans depending on the state ofthe organism. Pathologies thought to involve too little NO production includehypertension, impotence, arteriosclerosis, and a susceptibility to infection.Diseases linked to excessive NO production include immune-type diabetes,neurotoxicity associated with aneurysm, stroke and reperfusion injury,inflammatory bowel disease, rheumatoid arthritis, cancer, septic shock, multiplesclerosis and transplant rejection.

According to Dr. Solomon Snyder, a neuroscientist at Johns HopkinsUniversity whose research group was the first to clone and sequence NOS, "NOappears to be one of the most important messenger molecules in the body. Excessproduction appears to cause brain damage from stroke and also inflammatoryconditions. Drugs that block the enzyme could be important therapeutically; thisbreakthrough may allow scientists to begin to design drugs to inhibit it."

The first three-dimensional structures of the catalytic site of NOS showin atomic detail how the enzyme recognizes the amino acid arginine, itssubstrate, and oxidizes it to form the biological signal NO. Stuehr stated, "Wenow have a clear understanding of where the reactive groups are located and howthe enzyme can control their interaction." The researchers believe that theunexpected discovery of two adjacent binding sites for the NOS inhibitorimidazole in the active site promises to aid in the design of drugs to modulateNOS activity and prevent NO overproduction.

Dual-function inhibitors that simultaneously bind both of these siteswould block both arginine and oxygen binding, creating an expanded dual-sitebinding region to increase affinity and prevent the formation of toxic, reactiveoxygen species. Since the characteristics of NOS inhibition vary among differentNOS types, these dual-function inhibitors also may lead to new drugs that targetonly one of the various forms of NOS, thereby limiting potential side effects.

The chemistry NOS uses to produce NO is complicated and unique inbiology, and its structure is completely different from other oxygenase enzymesinvolved in hormone synthesis and the detoxification of harmful compounds.However, a comparison provides insight into the aspects of these enzymes thatare key for the similarities and differences in the reactions they catalyze.According to Tainer, this should aid researchers in reproducing these biologicalreactions in the laboratory for the design of drugs or other desirablecompounds.

A technique known as protein crystallography was used to determine theNOS structures. This involves diffracting x-rays off of crystals grown from thehighly purified enzyme. The x-ray diffraction experiment provides all theinformation necessary to create an atomic image of the protein. X-ray radiationwas needed in this experiment because the diffraction only occurs when the sizeof the object is similar to the wavelength size of the radiation.

Funding for the study was obtained from the Skaggs Institute forResearch and the National Institutes of Health, the latter of which accountedfor approximately 15% of the resources.

Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.

Cite This Page:

Scripps Research Institute. "Scientists Solve Active Site Of Structure Of Enzyme That Produces Nitric Oxide." ScienceDaily. ScienceDaily, 20 October 1997. <www.sciencedaily.com/releases/1997/10/971017065203.htm>.
Scripps Research Institute. (1997, October 20). Scientists Solve Active Site Of Structure Of Enzyme That Produces Nitric Oxide. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/1997/10/971017065203.htm
Scripps Research Institute. "Scientists Solve Active Site Of Structure Of Enzyme That Produces Nitric Oxide." ScienceDaily. www.sciencedaily.com/releases/1997/10/971017065203.htm (accessed April 1, 2015).

Share This

More From ScienceDaily

More Health & Medicine News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Reuters - Innovations Video Online (Apr. 1, 2015) Israeli scientists says laser bonding of tissue allows much faster healing and less scarring. Amy Pollock has more. Video provided by Reuters
Powered by NewsLook.com
Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

AFP (Apr. 1, 2015) The governments of Liberia and Sierra Leone have been busy fighting the menace created by the deadly Ebola virus, but illicit drug lords have taken advantage of the situation to advance the drug trade. Duration: 01:12 Video provided by AFP
Powered by NewsLook.com
Stigma Stalks India's Leprosy Sufferers as Disease Returns

Stigma Stalks India's Leprosy Sufferers as Disease Returns

AFP (Apr. 1, 2015) The Indian government declared victory over leprosy in 2005, but the disease is making a comeback in some parts of the country, with more than a hundred thousand lepers still living in colonies, shunned from society. Duration: 02:41 Video provided by AFP
Powered by NewsLook.com
7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins