Featured Research

from universities, journals, and other organizations

U-M And U-Ill. Chemists Create Molecular Antenna To Harvest Light

Date:
November 17, 1997
Source:
University Of Michigan
Summary:
Imagine your roof covered with a thin film of organic molecules busily converting sunlight into electricity. Visualize tiny molecular flashlights illuminating the DNA of living cells. Picture microscopic optical sensors that change color when exposed to trace amounts of chemicals.

ANN ARBOR---Imagine your roof covered with a thin film of organic molecules busily converting sunlight into electricity. Visualize tiny molecular flashlights illuminating the DNA of living cells. Picture microscopic optical sensors that change color when exposed to trace amounts of chemicals.

Science fiction? Scientists at the University of Michigan and the University of Illinois at Urbana-Champaign don't think so. They have developed a new class of large dendrimer supermolecules which, they say, could one day be used for all these applications and more. "Normally, light energy disperses randomly throughout a molecule," said Raoul Kopelman, the U-M's Kasimir Fajans Professor of Chemistry, Physics and Applied Physics. "But these molecules have a specific tree-like structure which allows them to funnel light energy through the branches and direct it to a central point."

When photons of ultraviolet light hit a group of light-harvesting atoms on a branch of one of these supermolecules, the absorbed energy travels down the branch in the form of energy packets called excitons. Losing a small amount of energy at each branching point, excitons keep falling toward the center of the molecular tree until they finally drop, one at a time, into a molecular "trap," which is attached to the dendrimer's center. In the "nanostar"---the most optimally designed version of these dendrimers to be developed so far---photosensitive molecules in the trap convert exciton energy back into visible light with up to 99 percent efficiency.

"It works like a miniature quantum well in a semiconducting circuit," said Stephen F. Swallen, U-M postdoctoral fellow in chemistry. "The excitons don't have the extra energy to climb back up the molecule, so they just keep falling into the trap."

Synthesized from repeating molecular units called phenylacetylene monomers, which branch out from a central core, dendrimers are among the largest structurally controlled organic molecule ever created, according to Jeffrey S. Moore, professor of chemistry at the University of Illinois at Urbana-Champaign. The biggest molecule they have synthesized so far contains 127 chromophores or light-harvesting units.

Each dendrimer is custom-made by Moore and his colleagues to Kopelman's specifications to produce different chemical and physical properties for different applications. One of the most significant properties of the new molecules is their ability to resist photobleaching. "Anyone who has ever had a sweater fade or disintegrate after exposure to sunlight has experienced photobleaching," Kopelman said. "Molecules can only absorb and emit photons a limited number of times before they fall apart. Photobleaching is a particularly important factor for these dendrimers, because they interact with light very strongly."

Their specific chemical composition and physical structure make it possible for the dendrimers to resist photobleaching, according to Swallen. "While most organic molecules will decompose if multiple excitons are concentrated at the same spot, the nanostar can protect itself by diverting some excess energy away from the center back to the outer parts of the dendrimer," he explained. "Because the molecule is never hit with more energy than it can handle, it lasts much longer than ordinary molecules when exposed to light."

Research funding for the project is provided by the National Science Foundation and the Office of Naval Research. Collaborators included Michael R. Shortreed of Iowa State University, Zhong-You Shi of the University of Michigan; Weihong Tan of the University of Florida, Gainesville; Zhifu Xu of PPG Industries; and Chelladurai Devadoss and Pamidighantam Bharathi from the University of Illinois, Urbana-Champaign.


Story Source:

The above story is based on materials provided by University Of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University Of Michigan. "U-M And U-Ill. Chemists Create Molecular Antenna To Harvest Light." ScienceDaily. ScienceDaily, 17 November 1997. <www.sciencedaily.com/releases/1997/11/971117064533.htm>.
University Of Michigan. (1997, November 17). U-M And U-Ill. Chemists Create Molecular Antenna To Harvest Light. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/1997/11/971117064533.htm
University Of Michigan. "U-M And U-Ill. Chemists Create Molecular Antenna To Harvest Light." ScienceDaily. www.sciencedaily.com/releases/1997/11/971117064533.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins