Featured Research

from universities, journals, and other organizations

U-M And U-Ill. Chemists Create Molecular Antenna To Harvest Light

Date:
November 17, 1997
Source:
University Of Michigan
Summary:
Imagine your roof covered with a thin film of organic molecules busily converting sunlight into electricity. Visualize tiny molecular flashlights illuminating the DNA of living cells. Picture microscopic optical sensors that change color when exposed to trace amounts of chemicals.

ANN ARBOR---Imagine your roof covered with a thin film of organic molecules busily converting sunlight into electricity. Visualize tiny molecular flashlights illuminating the DNA of living cells. Picture microscopic optical sensors that change color when exposed to trace amounts of chemicals.

Science fiction? Scientists at the University of Michigan and the University of Illinois at Urbana-Champaign don't think so. They have developed a new class of large dendrimer supermolecules which, they say, could one day be used for all these applications and more. "Normally, light energy disperses randomly throughout a molecule," said Raoul Kopelman, the U-M's Kasimir Fajans Professor of Chemistry, Physics and Applied Physics. "But these molecules have a specific tree-like structure which allows them to funnel light energy through the branches and direct it to a central point."

When photons of ultraviolet light hit a group of light-harvesting atoms on a branch of one of these supermolecules, the absorbed energy travels down the branch in the form of energy packets called excitons. Losing a small amount of energy at each branching point, excitons keep falling toward the center of the molecular tree until they finally drop, one at a time, into a molecular "trap," which is attached to the dendrimer's center. In the "nanostar"---the most optimally designed version of these dendrimers to be developed so far---photosensitive molecules in the trap convert exciton energy back into visible light with up to 99 percent efficiency.

"It works like a miniature quantum well in a semiconducting circuit," said Stephen F. Swallen, U-M postdoctoral fellow in chemistry. "The excitons don't have the extra energy to climb back up the molecule, so they just keep falling into the trap."

Synthesized from repeating molecular units called phenylacetylene monomers, which branch out from a central core, dendrimers are among the largest structurally controlled organic molecule ever created, according to Jeffrey S. Moore, professor of chemistry at the University of Illinois at Urbana-Champaign. The biggest molecule they have synthesized so far contains 127 chromophores or light-harvesting units.

Each dendrimer is custom-made by Moore and his colleagues to Kopelman's specifications to produce different chemical and physical properties for different applications. One of the most significant properties of the new molecules is their ability to resist photobleaching. "Anyone who has ever had a sweater fade or disintegrate after exposure to sunlight has experienced photobleaching," Kopelman said. "Molecules can only absorb and emit photons a limited number of times before they fall apart. Photobleaching is a particularly important factor for these dendrimers, because they interact with light very strongly."

Their specific chemical composition and physical structure make it possible for the dendrimers to resist photobleaching, according to Swallen. "While most organic molecules will decompose if multiple excitons are concentrated at the same spot, the nanostar can protect itself by diverting some excess energy away from the center back to the outer parts of the dendrimer," he explained. "Because the molecule is never hit with more energy than it can handle, it lasts much longer than ordinary molecules when exposed to light."

Research funding for the project is provided by the National Science Foundation and the Office of Naval Research. Collaborators included Michael R. Shortreed of Iowa State University, Zhong-You Shi of the University of Michigan; Weihong Tan of the University of Florida, Gainesville; Zhifu Xu of PPG Industries; and Chelladurai Devadoss and Pamidighantam Bharathi from the University of Illinois, Urbana-Champaign.


Story Source:

The above story is based on materials provided by University Of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University Of Michigan. "U-M And U-Ill. Chemists Create Molecular Antenna To Harvest Light." ScienceDaily. ScienceDaily, 17 November 1997. <www.sciencedaily.com/releases/1997/11/971117064533.htm>.
University Of Michigan. (1997, November 17). U-M And U-Ill. Chemists Create Molecular Antenna To Harvest Light. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/1997/11/971117064533.htm
University Of Michigan. "U-M And U-Ill. Chemists Create Molecular Antenna To Harvest Light." ScienceDaily. www.sciencedaily.com/releases/1997/11/971117064533.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins