Featured Research

from universities, journals, and other organizations

Compressed Sulfur Found To Be A Superconductor

Date:
December 3, 1997
Source:
Carnegie Institution
Summary:
A group of scientists from the Carnegie Institution and Russian Academy of Sciences report in this week's Nature magazine the surprising observation that sulfur becomes a superconductor at 93 GPa (9.3 million atmospheres). At this pressure, pure sulfur transforms to a superconductor with a Tc (critical temperature) of 10 K, or -273C.

A group of scientists from the Carnegie Institution and Russian Academy of Sciences report in this week's Nature magazine the surprising observation that sulfur becomes a superconductor at 93 GPa (9.3 million atmospheres). At this pressure, pure sulfur transforms to a superconductor with a Tc (critical temperature) of 10 K, or -263C. As pressure increases, so does the superconducting temperature, at a rate of .06 K per GPa (up to 14K). At a pressure of 160 GPa (the highest measured in the current experiments), Tc again increases--to 17 K. In a related study, appearing in this week's Physical Review Letters, the same authors report the first measurements on a known superconductor, the metal niobium, above one million atmospheres (or one megabar)--to 132 GPa.

Related Articles


A material is said to be a superconductor when it loses resistance to electrical current flow. The phenomenon, one of the most non-intuitive in physics, has been recognized since 1911. Within the last decade, superconducting materials have been found at temperatures high enough to hold promise for energy-related applications, especially in the computer and electric energy fields. Most studies have focused on oxide-based ceramics.

The mechanisms of superconductivity in materials are of great theoretical interest but are, in many cases, in dispute. Studies of simple materials such as the pure elements that might superconduct, including an examination of the effects of pressure on Tc, are essential for understanding the underlying physics. Such studies in turn are crucial for designing new, technologically useful superconductors.

The authors of both papers are Viktor Struzhkin, Russell Hemley, Ho-kwang Mao, all of Carnegie's Geophysical Laboratory and NSF Center for High Pressure Research, and Yuri Timofeev, of the Institute of High-Pressure Physics, Russian Academy of Sciences. The group used the Geophysical Laboratory's megabar high-pressure diamond-anvil cell in conjunction with a magnetic susceptibility technique they have perfected over the past few years. The technique allowed them to determine the superconducting transition temperature without the need for placing electrical leads on the sample. Thus, they could perform their measurements on very small samples (down to 0.04 of a millimeter in diameter and a few thousandths of a millimeter in thickness). Tests of the method in the megabar pressure range (above 100 GPa) were done on niobium, which has a Tc of 9.5 K at atmospheric pressure but decreases to 4.5 K at 132 GPa (rather than increases).

Sulfur's transition from insulator to superconductor at 93 GPa was unexpected. Several years ago, scientists elsewhere had observed changes in optical properties of sulfur that suggested that the material transforms to a metal at about 90 GPa (at room temperature), with a corresponding change in crystal structure, and that it transformed to another structure at about 160 GPa. Recent theoretical calculations had predicted that sulfur would become a superconductor only at much higher pressures (above 550 GPa). The new results show that the material transforms directly from an insulator to a superconductor at the first transition (at 90 GPa). The results provide an important example of the large-scale changes in physical properties that can be induced by pressure.

The authors write in their Nature paper that their results are particularly notable because the metallic phases of sulfur have the highest Tc's of any elemental solid measured to date. Sulfur now joins the heavier members of its family in the Periodic Table of the Elements (the chalcogenide family, including selenium and tellurium), as a superconductor. This fact should provide critical tests for theories of superconductivity. In closing their paper, the authors write: "Given the comparative simplicity of elemental sulfur for electronic structure calculations and knowledge of its high-pressure crystal structures, this element should provide important tests of possible new mechanisms." The work is part of a much larger effort at the Geophysical Laboratory devoted to studying the behavior of materials at ultrahigh pressures, including those that prevail deep within the planets.

The research was supported partially by the National Science Foundation (Division of Materials Science and Center for High-Pressure Research).


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Institution. "Compressed Sulfur Found To Be A Superconductor." ScienceDaily. ScienceDaily, 3 December 1997. <www.sciencedaily.com/releases/1997/12/971203061221.htm>.
Carnegie Institution. (1997, December 3). Compressed Sulfur Found To Be A Superconductor. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/1997/12/971203061221.htm
Carnegie Institution. "Compressed Sulfur Found To Be A Superconductor." ScienceDaily. www.sciencedaily.com/releases/1997/12/971203061221.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins