Featured Research

from universities, journals, and other organizations

Little Tin Worms On The March

Date:
February 27, 1998
Source:
Michigan Technological University
Summary:
In high-end electronics, where success hinges on being lighter, faster, and smaller, size is the biggest barrier to progress. But when computer circuitry and other tiny devices get to be too small, Newton's comfortable laws yield to the quirky world of quantum physics, where nothing acts like it did before and nobody knows what's going to happen.

HOUGHTON, MI - In high-end electronics, where success hinges on being lighter, faster, and smaller, size is the biggest barrier to progress. But when computer circuitry and other tiny devices get to be too small, Newton's comfortable laws yield to the quirky world of quantum physics, where nothing acts like it did before and nobody knows what's going to happen.

So last year, Mohan Krishnamurthy and his fellow researchers at Michigan Tech University had no particular expectations as they completed their latest experiment, in which they'd carefully applied a film of a tin-germanium alloy several atomic layers thick to a two-inch disk of germanium (a silicon-like element). Tin and germanium don't get along very well, metallurgically speaking, so the experiment's prospects were unusually cryptic.

"We knew something funny would happen," Krishnamurthy recalls. "But we never expected this."

What they discovered were little tin "worms" digging neat little ditches through the alloy down to the level of the pure germanium. "Like an earthworm, the globs of tin eat up the alloy, spit out the germanium, and keep the tin," he said. And this was no random tangle of trenches. Like soldiers on parade march, the worms had dug out a series of wobbly straight lines and right-angle turns. And, when they finally halted their excavations, they hadn't created the world's smallest circuitboard, exactly; instead, it looked more like an artist's fantasy of how such a circuitboard might look. How small was it? The trenches were 8 nanometers deep, each flanked by tiny mounds of germanium only 4 nanometers high. Plus, they were amazingly long by nano-standards, up to about 10 microns in length.

The researchers' work appeared in Physical Review Letters and later in the February 13 edition of Science, which published a short article on page 991 under the heading "Quantum Etch-A-Sketch."

Krishnamurthy, an assistant professor in the MTU Department of Metallurgical and Materials Engineering, is a leader in the new field of epitaxial self-assembly, in which a very thin film of one type of substance is applied on top of another. When conditions are right, the top film buckles in a very precise way, forming tiny mountains, islands, or other nanostructures on top of the substrate. The goal is to develop a pattern of these nanostructures that have applications in microelectronics, similar to the way wires conduct electricity in a circuit.

Since he coauthored a groundbreaking paper on the subject in 1993, Krishnamurthy has concentrated his efforts on films and substrates made of silicon, the element of choice for the electronics industry. However, he notes, at the nano-level--anything smaller than 100 nanometers, or one-tenth of a micron--quantum physics kicks in, which opens up all kinds of new possibilities. For instance, the properties of those quantum germanium mounds dug up by the tin earthworms could be far different from ridges of regular-sized germanium. As an example, nano-germanium might turn out to be a good light-absorber, and thus have potential as a laser.

"All kinds of new properties could come out of this," Krishnamurthy said, adding, "There's a lot of work that needs to be done."

Krishnamurthy credits Professor Stephen Hackney, an expert in the phase transformation of metals, for helping determine the underlying rationale for the tin worms' excavating behavior. PhD students Xurui "Sherry" Deng and Becky Yang also contributed to the research project.


Story Source:

The above story is based on materials provided by Michigan Technological University. Note: Materials may be edited for content and length.


Cite This Page:

Michigan Technological University. "Little Tin Worms On The March." ScienceDaily. ScienceDaily, 27 February 1998. <www.sciencedaily.com/releases/1998/02/980227054350.htm>.
Michigan Technological University. (1998, February 27). Little Tin Worms On The March. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/1998/02/980227054350.htm
Michigan Technological University. "Little Tin Worms On The March." ScienceDaily. www.sciencedaily.com/releases/1998/02/980227054350.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins