Featured Research

from universities, journals, and other organizations

Little Tin Worms On The March

Date:
February 27, 1998
Source:
Michigan Technological University
Summary:
In high-end electronics, where success hinges on being lighter, faster, and smaller, size is the biggest barrier to progress. But when computer circuitry and other tiny devices get to be too small, Newton's comfortable laws yield to the quirky world of quantum physics, where nothing acts like it did before and nobody knows what's going to happen.

HOUGHTON, MI - In high-end electronics, where success hinges on being lighter, faster, and smaller, size is the biggest barrier to progress. But when computer circuitry and other tiny devices get to be too small, Newton's comfortable laws yield to the quirky world of quantum physics, where nothing acts like it did before and nobody knows what's going to happen.

So last year, Mohan Krishnamurthy and his fellow researchers at Michigan Tech University had no particular expectations as they completed their latest experiment, in which they'd carefully applied a film of a tin-germanium alloy several atomic layers thick to a two-inch disk of germanium (a silicon-like element). Tin and germanium don't get along very well, metallurgically speaking, so the experiment's prospects were unusually cryptic.

"We knew something funny would happen," Krishnamurthy recalls. "But we never expected this."

What they discovered were little tin "worms" digging neat little ditches through the alloy down to the level of the pure germanium. "Like an earthworm, the globs of tin eat up the alloy, spit out the germanium, and keep the tin," he said. And this was no random tangle of trenches. Like soldiers on parade march, the worms had dug out a series of wobbly straight lines and right-angle turns. And, when they finally halted their excavations, they hadn't created the world's smallest circuitboard, exactly; instead, it looked more like an artist's fantasy of how such a circuitboard might look. How small was it? The trenches were 8 nanometers deep, each flanked by tiny mounds of germanium only 4 nanometers high. Plus, they were amazingly long by nano-standards, up to about 10 microns in length.

The researchers' work appeared in Physical Review Letters and later in the February 13 edition of Science, which published a short article on page 991 under the heading "Quantum Etch-A-Sketch."

Krishnamurthy, an assistant professor in the MTU Department of Metallurgical and Materials Engineering, is a leader in the new field of epitaxial self-assembly, in which a very thin film of one type of substance is applied on top of another. When conditions are right, the top film buckles in a very precise way, forming tiny mountains, islands, or other nanostructures on top of the substrate. The goal is to develop a pattern of these nanostructures that have applications in microelectronics, similar to the way wires conduct electricity in a circuit.

Since he coauthored a groundbreaking paper on the subject in 1993, Krishnamurthy has concentrated his efforts on films and substrates made of silicon, the element of choice for the electronics industry. However, he notes, at the nano-level--anything smaller than 100 nanometers, or one-tenth of a micron--quantum physics kicks in, which opens up all kinds of new possibilities. For instance, the properties of those quantum germanium mounds dug up by the tin earthworms could be far different from ridges of regular-sized germanium. As an example, nano-germanium might turn out to be a good light-absorber, and thus have potential as a laser.

"All kinds of new properties could come out of this," Krishnamurthy said, adding, "There's a lot of work that needs to be done."

Krishnamurthy credits Professor Stephen Hackney, an expert in the phase transformation of metals, for helping determine the underlying rationale for the tin worms' excavating behavior. PhD students Xurui "Sherry" Deng and Becky Yang also contributed to the research project.


Story Source:

The above story is based on materials provided by Michigan Technological University. Note: Materials may be edited for content and length.


Cite This Page:

Michigan Technological University. "Little Tin Worms On The March." ScienceDaily. ScienceDaily, 27 February 1998. <www.sciencedaily.com/releases/1998/02/980227054350.htm>.
Michigan Technological University. (1998, February 27). Little Tin Worms On The March. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/1998/02/980227054350.htm
Michigan Technological University. "Little Tin Worms On The March." ScienceDaily. www.sciencedaily.com/releases/1998/02/980227054350.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins