New! Sign up for our free email newsletter.
Reference Terms
from Wikipedia, the free encyclopedia

Quantum dot

A quantum dot is a semiconductor nanostructure that confines the motion of conduction band electrons, valence band holes, or excitons (bound pairs of conduction band electrons and valence band holes) in all three spatial directions. The confinement can be due to electrostatic potentials (generated by external electrodes, doping, strain, impurities), the presence of an interface between different semiconductor materials (e.g. in core-shell nanocrystal systems), the presence of the semiconductor surface (e.g. semiconductor nanocrystal), or a combination of these. A quantum dot has a discrete quantized energy spectrum. The corresponding wave functions are spatially localized within the quantum dot, but extend over many periods of the crystal lattice. A quantum dot contains a small finite number (of the order of 1-100) of conduction band electrons, valence band holes, or excitons, i.e., a finite number of elementary electric charges.

Small quantum dots, such as colloidal semiconductor nanocrystals, can be as small as 2 to 10 nanometers, corresponding to 10 to 50 atoms in diameter and a total of 100 to 100,000 atoms within the quantum dot volume. Self-assembled quantum dots are typically between 10 and 50 nm in size. Quantum dots defined by lithographically patterned gate electrodes, or by etching on two-dimensional electron gases in semiconductor heterostructures can have lateral dimensions exceeding 100 nm. At 10 nm in diameter, nearly 3 million quantum dots could be lined up end to end and fit within the width of a human thumb.

Related Stories
 


Matter & Energy News

September 19, 2025

Scientists at Michigan State University have discovered how to use ultrafast lasers to wiggle atoms in exotic materials, temporarily altering their electronic behavior. By combining cutting-edge microscopes with quantum simulations, they created a ...
America already mines all the critical minerals it needs for energy, defense, and technology, but most are being wasted as mine tailings. Researchers discovered that minerals like cobalt, germanium, and rare earths are discarded in massive amounts, ...
Faint hydrogen signals from the cosmic Dark Ages may soon help determine the mass of dark matter particles. Simulations suggest future Moon-based observatories could distinguish between warm and cold dark matter, providing long-sought answers about ...
Scientists at Harvard have discovered how salts like lithium bromide break down tough proteins such as keratin—not by attacking the proteins directly, but by altering the surrounding water ...
Scientists in Korea have engineered magnetic nanohelices that can control electron spin with extraordinary precision at room temperature. By combining structural chirality and magnetism, these nanoscale helices can filter spins without complex ...
Quantum materials, defined by their photon-like electrons, are opening new frontiers in material science. Researchers have synthesized organic compounds that display a universal magnetic behavior tied to a distinctive feature in their band ...
Scientists have finally unlocked a way to identify the elusive W state of quantum entanglement, solving a decades-old problem and opening paths to quantum teleportation and advanced quantum ...
Physicists have achieved a breakthrough by using a 58-qubit quantum computer to create and observe a long-theorized but never-before-seen quantum phase of matter: a Floquet topologically ordered state. By harnessing rhythmic driving in these quantum ...
For the first time, scientists have observed electrons in graphene behaving like a nearly perfect quantum fluid, challenging a long-standing puzzle in physics. By creating ultra-clean samples, the team at IISc uncovered a surprising decoupling of ...
Physicists have unveiled a new superconducting detector sensitive enough to hunt dark matter particles smaller than electrons. By capturing faint photon signals, the device pushes the search into uncharted ...
Researchers in Germany and Australia have created a simple but powerful tool to detect nanoplastics—tiny, invisible particles that can slip through skin and even the blood-brain barrier. Using an "optical sieve" test strip viewed under a regular ...
Artificial intelligence is consuming enormous amounts of energy, but researchers at the University of Florida have built a chip that could change everything by using light instead of electricity for a core AI function. By etching microscopic lenses ...

Latest Headlines

updated 12:56 pm ET