Featured Research

from universities, journals, and other organizations

Peptides Implicated In Body's Response To Pain

Date:
March 27, 1998
Source:
NIH-National Institute Of Neurological Disorders And Stroke
Summary:
Scientists studying animal models with support from the National Institutes of Health have found that a chemical, called neurokinin A, may be responsible for the body's response to moderate-to-intense pain.

Pain is an extremely disabling condition leading to an annual cost of $65 billion lost in work productivity and 4 billion work days. It also accounts for 40 million visits per year to physicians for "new" pain and $3 billion in sales each year of over-the-counter analgesics. Scientists studying animal models with support from the National Institutes of Health have found that a chemical, called neurokinin A, may be responsible for the body's response to moderate-to-intense pain. This finding, reported in the March 26, 1998, issue of Nature(1), may eventually lead to new treatments for pain.

Related Articles


Under the leadership of Allan I. Basbaum, Ph.D., neuroscientists at the University of California at San Francisco (UCSF) and the University of Minnesota have found that mice with a mutation in a gene that encodes for two chemicals, peptides called substance P and neurokinin A, have a reduced response to increased pain stimuli.

The experiment suggests that these peptides play a role in the body's pain responses and are essential components in the production of moderate-to-severe pain.

"After seeing this change, we now believe that substance P and neurokinin A must work in combination to account for pain responses in the body," said Dr. Basbaum, Chair of the Department of Anatomy and Physiology and the Division of Neuroscience at UCSF.

The scientists interrupted the gene encoding for preprotachykinin, whose peptide products include substance P, long believed to play an important role in pain response, and neurokinin A. They observed that the colony of mutant animals maintained the same response to mild pain as their non-mutant mouse counterparts. The mutant mice, however, exhibited a reduced response when subjected to stimuli producing moderate-to-intense pain. Scientists believe that neurokinin A, along with substance P, is released directly in response to intensified pain stimuli.

The study authors received funding from several institutes at the National Institutes of Health, including the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute of Dental Research, and the National Institute on Drug Abuse. Additional support came from the Howard Hughes Medical Institute.

"Although pain can in most cases be effectively treated, it is still a major health problem. More than 50 million Americans are partially or totally disabled by pain, from the occasional migraine headache to chronic back pain to the pain that accompanies diseases such as cancer," says NINDS Acting Director Audrey S. Penn, M.D. "There is a pressing need for more compounds in the arsenal of pain medications available to physicians and patients. This study puts us one step closer to correcting this very serious problem."

Certain chemicals, glutamate, for example, act in the transmission of pain messages by stimulating pain receptors. It has been previously demonstrated that when glutamate receptors are blocked, experimental mice exhibit a reduction in their responses to pain, providing scientists with compelling evidence of the chemical's role in transmission of pain messages.

Together with glutamate, substance P is known to stimulate pain receptors, but its precise action is less clear and its function complex. In the current study, release of substance P and neurokinin A causes inflammation and a pain response that is markedly reduced in the mutant mouse colony. Release of neurokinin A, the scientists believe, is required to produce moderate-to-intense pain.

Neurokinin A is a tachykinin, a type of peptide belonging to a family of chemicals known as kinins. Kinins play a role in inflammation and, in the case of pain, are thought to stimulate pain receptors in the body.

The study authors believe that drugs involved with the release of neurokinin A, called neurokinin antagonists, might one day be used in combination with morphine as a treatment for moderate-to-severe pain.

"There are many factors present in pain perception," says Cheryl Kitt, Ph.D., a health scientist administrator at the NINDS. "This research is a first step in looking at the role of tachykinins in moderate-to-intense pain. Although the findings have great potential for the development of new drugs for treating pain, we still need to investigate the roles of other factors, such as additional kinin genes."

"These results, if demonstrated in clinical studies, might result in a combination of neurokinin A antagonists and morphine for the treatment of moderate to intense pain. Such a treatment would have fewer side effects and would enable lower doses of morphine to be used," said Dr. Basbaum.

The NINDS, one of the National Institutes of Health located in Bethesda, Maryland, is the nation's leading supporter of research on the brain and nervous system and a lead agency for the Congressionally designated Decade of the Brain. The Institute is also one of 21 NIH components participating in the recently-established NIH Pain Research Consortium.

(1) Cao, Y.Q., Mantyh, P.W., Carlson, E.J., Gillespie, A.M., Epstein, C.J., Basbaum, A.I. Primary Afferent Tachykinins are Required to Experience Moderate to Intense Pain. Nature, Vol. 392, March 26, 1998, P. 390-394.


Story Source:

The above story is based on materials provided by NIH-National Institute Of Neurological Disorders And Stroke. Note: Materials may be edited for content and length.


Cite This Page:

NIH-National Institute Of Neurological Disorders And Stroke. "Peptides Implicated In Body's Response To Pain." ScienceDaily. ScienceDaily, 27 March 1998. <www.sciencedaily.com/releases/1998/03/980327075142.htm>.
NIH-National Institute Of Neurological Disorders And Stroke. (1998, March 27). Peptides Implicated In Body's Response To Pain. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/1998/03/980327075142.htm
NIH-National Institute Of Neurological Disorders And Stroke. "Peptides Implicated In Body's Response To Pain." ScienceDaily. www.sciencedaily.com/releases/1998/03/980327075142.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins