Featured Research

from universities, journals, and other organizations

Gravity-Sensing System In Inner Ear Studied On Neurolab Space Shuttle Flight

Date:
April 20, 1998
Source:
Washington University School Of Medicine
Summary:
With the beginning of the space shuttle mission last Friday, a group of researchers from Washington University School of Medicine in St. Louis are inside NASA's Kennedy Space Center. But instead of tracking Columbia's white plume on takeoff, they are glued to monitors that are revealing how four toadfish are handling the flight.

St. Louis, April 16, 1998 -- With the beginning of the space shuttle mission last Friday, a group of researchers from Washington University School of Medicine in St. Louis were inside NASA's Kennedy Space Center. But instead of tracking Columbia's white plume on takeoff, they were glued to monitors that revealed how four toadfish handled the flight.

Stephen M. Highstein, M.D., Ph.D., professor of otolaryngology and anatomy & neurobiology, Allen Mensinger, Ph.D., research instructor in otolaryngology and other members of Highstein's laboratory are studying the response of these saltwater fish to the near-zero gravity conditions in a shuttle orbiting above Earth's atmosphere. By doing so, they hope to reveal clues to help understand why astronauts suffer from something akin to motion sickness the first few days in space.

"The inner ear of these fish, which helps sense motion, is highly similar to that of humans and other mammals," Highstein says. "By studying toadfish, we can gain a very good sense of how astronauts respond to the absence of gravity." Highstein says these studies also may help explain the mechanism of motion sickness back on Earth. The toadfish study is one of 26 experiments carried out during the 16-day Neurolab mission, which was planned to begin on April 16 but was rescheduled to launch the next day due to problems with the communication system in the crew cabin. The mission is studying the effects of microgravity upon aspects of neurobiology ranging from development to perception. Besides studies of the predatory, slow-moving toadfish found off the Atlantic coast, other research will address related questions using rats, crickets and other animals. Volunteers in the seven-member crew also will serve as study subjects.

The Washington University researchers are studying responses to the altered gravitational state by analyzing signals sent to the fishes' brains from gravity-sensing cells in otolith organs of the inner ear. Humans and other vertebrates require a sense of up and down to live in Earth's gravitational field. Lack of gravity is thought to alter signals coming from the inner ear, leading to nausea in what is known as space adaptation syndrome.

Highstein notes its resemblance to motion sickness. "You can't think, you can't move, you can't eat, you can't do anything but lie still." Before the flight, Highstein and Mensinger will cut the toadfish nerve that detects gravity signals and place a detector called a wafer electrode assembly in the nerve's path. The nerve will grow through pores in the assembly and begin carrying signals again. Special electrodes encircling nine of the pores will pick up nerve signal information before, during and after the Shuttle flight.

Highstein says the electrodes, developed by David J. Anderson, Ph.D., professor of otorhinolaryngology and electrical engineering & computer science at the University of Michigan, are an exciting aspect of the experiments. "They have the potential to be the first truly permanent interface with the nervous system allowing signals to be picked up from brain circuitry," he says.

The electrodes will send information to a wireless transmitter surgically mounted on the head of each fish. These telemetry transmitters were devised by the National Space Development Agency of Japan. The transmitters, which gain power from a magnetic field located outside the fish tanks, will then send information through a series of devices to a recorder that translates nerve activity into marks on a scroll.

The Neurolab crew will monitor the recording device as the fish adapt to microgravity. And by sliding the fish tanks back and forth on special rails, they will expose the toadfish to linear acceleration equal to half the Earth's gravity. These experiments will permit Highstein and colleagues to detect signals sent from the inner ear to the brain as the fish adjust to changing gravity.

"Our work should yield fundamental information about how the gravity-sensing system works in normal and microgravity situations," Highstein says. "This may have an impact on future therapies for motion sickness."

The National Science Foundation and the National Aeronautics and Space Administration provided funding for this research.

To find out more about the Neurolab mission, go to http://shuttle.nasa.gov. For more information on Highstein's research, go to the Aquatic Team site at http://neurolab.jsc.nasa.gov/aquahome.htm. For toadfish photos, go to http://www-pao.ksc.nasa.gov/kscpao/captions/hotpics.htm.


Story Source:

The above story is based on materials provided by Washington University School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School Of Medicine. "Gravity-Sensing System In Inner Ear Studied On Neurolab Space Shuttle Flight." ScienceDaily. ScienceDaily, 20 April 1998. <www.sciencedaily.com/releases/1998/04/980420081718.htm>.
Washington University School Of Medicine. (1998, April 20). Gravity-Sensing System In Inner Ear Studied On Neurolab Space Shuttle Flight. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/1998/04/980420081718.htm
Washington University School Of Medicine. "Gravity-Sensing System In Inner Ear Studied On Neurolab Space Shuttle Flight." ScienceDaily. www.sciencedaily.com/releases/1998/04/980420081718.htm (accessed July 25, 2014).

Share This




More Space & Time News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com
Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins