Featured Research

from universities, journals, and other organizations

New Imaging Agent Found For Early Diagnosis And Research Of Parkinson's Disease

Date:
May 6, 1998
Source:
Massachusetts General Hospital
Summary:
Researchers at Harvard Medical School and Massachusetts General Hospital have developed a new imaging agent for Parkinson's disease that could allow clinicians to diagnose the disease more accurately and earlier in its progression than is currently possible, as well as to utilize imaging technologies that are cheaper, faster, and widely available.

BOSTON--April 30, 1998--Researchers at Harvard Medical School and Massachusetts General Hospital have developed a new imaging agent for Parkinson's disease that could allow clinicians to diagnose the disease more accurately and earlier in its progression than is currently possible, as well as to utilize imaging technologies that are cheaper, faster, and widely available.

Related Articles


In four articles to be published in the June Synapse, the scientists describe how the imaging agent Altropane visualized the degree of nerve loss in the brains of people in different stages of Parkinson's. The scientists suggest that the chemical, in addition to facilitating definitive diagnoses, could help researchers track the success of experimental treatments and possibly identify presymptomatic patients to use in studies of this common, but poorly understood neurodegenerative disease.

Bertha Madras, PhD, associate professor of psychobiology at Harvard Medical School and the New England Regional Primate Research Center, in collaboration with chemist Peter Meltzer, president of Organix Inc. in Woburn, Mass., and others reported their basic and preclinical research in three papers. Alan Fischman, MD, PhD, associate professor of radiology at Massachusetts General Hospital and Harvard Medical School, directed the clinical study and was lead author of the fourth paper.

Most cases of Parkinson's are diagnosed clinically. However, clinical diagnoses have been shown to be wrong one out of five times. In addition, while the diagnosis often is straightforward in severely affected patients who display the disease's hallmark symptoms, it is difficult, especially in young people, to distinguish early symptoms of Parkinson's, such as a tremor in one hand, from symptoms of other diseases that can masquerade as Parkinson's.

In a clinical study involving 15 people, Fischman and his colleagues found that Altropane accurately detected Parkinson's at different stages of the disease's progression. The researchers compared people with severe and moderate Parkinson's to healthy volunteers. People with moderate disease had weaker images than did the controls, and in people with severe disease had almost none of the agent was detected in the affected brain areas. The study even confirmed a suspected Parkinson's diagnosis for a 14-year-old boy.

Madras discovered Altropane in the course of her research on cocaine's action in the brain. In 1988, she found that a tropane, a chemical that has the basic skeleton of cocaine, bound specifically to the dopamine transporter. This protein sits on the terminals of dopamine-releasing neurons in the brain, where it regulates dopamine levels.

Research shows that in people with Parkinson's, dopamine neurons in the brain's substantia nigra region gradually die. Madras reasoned that an agent that lights up dopamine transporters on these neurons should be able to reflect the degree of neuronal loss and give insight into the progression of disease. In 1989, she and her collaborators synthesized a novel kind of tropane. They later attached a radioactive label to turn the tropane into an agent for single photon emission computed tomography (SPECT) imaging.

This ability to use SPECT imaging to diagnose Parkinson's will make the procedure faster and cheaper. The only Parkinson's imaging method currently available requires positron emission tomography (PET). This procedure is complicated and not widely available'only about seven centers use it nationwide. By contrast, SPECT imaging is available at most nuclear medicine department in hospitals around the country, and one round of PET-based Parkinson's imaging costs about $2,500, whereas a SPECT study with Altropane runs $1000 per patient.

The research also showed that Altropane is 10 times more selective than the most advanced competing product, which binds to transporters on both serotonin and dopamine neurons and thus complicates interpretation. Moreover, Altropane can be imaged shortly after injection, whereas other products require a one-day waiting period.

Madras and Fischman, who note that an early diagnosis of Parkinson's is truly useful only when followed by treatment, feel that Altropane could further scientists' efforts to devise experimental therapies for Parkinson's. First, it could help identify candidates for clinical trials by finding presymptomatic patients who have "silent" nerve degeneration. By the time clear symptoms appear, roughly 80 percent of the affected brain pathway has already been lost, limiting the usefulness of neuroprotective drugs. Secondly, repeated imaging of patients receiving experimental therapy would give researchers a window on whether the therapy works.

Altropane could also be used to help researchers explain why and how Parkinson's disease destroys neurons. The budding field of Parkinson's genetics could use the substance to identify presymptomatic yet affected relatives of Parkinson's patients to include in their study. Madras says that developing a solid base of information on the time course of Parkinson's will tell researchers what would be the best period for intervention. "We must begin long-term planning for Parkinson's disease now," Madras says. "That involves identifying a population at risk and watching the course of disease even while new therapies are not yet available."

These studies were funded by the National Institute on Drug Abuse, the National Institute of Neurological Disorders and Stroke, the National Institute of Mental Health, and Boston Life Sciences.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts General Hospital. "New Imaging Agent Found For Early Diagnosis And Research Of Parkinson's Disease." ScienceDaily. ScienceDaily, 6 May 1998. <www.sciencedaily.com/releases/1998/05/980506082210.htm>.
Massachusetts General Hospital. (1998, May 6). New Imaging Agent Found For Early Diagnosis And Research Of Parkinson's Disease. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/1998/05/980506082210.htm
Massachusetts General Hospital. "New Imaging Agent Found For Early Diagnosis And Research Of Parkinson's Disease." ScienceDaily. www.sciencedaily.com/releases/1998/05/980506082210.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins