Featured Research

from universities, journals, and other organizations

Speeding Stars On Galaxy's Edge Can Now Be Tracked By Radio Telescopes With A Twinkle In Their Eye, Cornell Astronomer Says

Date:
June 15, 1998
Source:
Cornell University
Summary:
Twinkle, twinkle little pulsar is much more than a nursery rhyme to radio astronomers. They have found a way to use the twinkling to measure the velocity and distance of these speeding neutron stars that are up above the world so high that they have escaped from the galaxy.

SAN DIEGO -- Twinkle, twinkle little pulsar is much more than a nursery rhyme to radio astronomers. They have found a way to use the twinkling to measure the velocity and distance of these speeding neutron stars that are up above the world so high that they have escaped from the galaxy.

Related Articles


In the hope of finding new pulsars and calculating just how fast they can travel, Cornell University professor of astronomy James Cordes, and Barney Rickett, an astronomer at the University of California, San Diego, have devised a method that combines computer modeling with two of the world's largest radio telescopeS, the Very Long Baseline Array (VLBA) and the Arecibo Observatory, to measure the speed and distance of these incredibly dense, spinning objects well above the galactic plane.

Cordes reported on this new hybrid method here today (June 9) at the 192nd meeting of the American Astronomical Society.

Five years ago, Cordes and Joseph Taylor, professor of physics at Princeton University, developed a mathematical model for tracking the path of radio waves as they travel through the ionized gas that fills the void between stars. This gave them a way to calculate the distance to most pulsars.

Pulsars are neutron stars, the highly dense, collapsed cores of stars that are thrown out in stellar explosions called supernovas. "There are probably rocketlike effects that occur during the few seconds it takes for the explosion to occur," says Cordes. The result is incredibly energetic objects with very intense magnetic fields. The fastest pulsar recorded to date is B2224+65 in the Guitar Nebula, which is moving at 1,600 kilometers (994 miles) a second. Cordes estimates that a neutron star is born about once every 100 years in the galaxy and that about one in four of these will eventually escape. Over the age of our galaxy, the Milky Way, this means that about 25 million neutron stars have escaped.

The problem is that Cordes' and Taylor's model cannot estimate distances to pulsars that have escaped from the Milky Way. Now, Cordes and Rickett have found a way to calculate both the distance and the speed of these rocketing stars by measuring the rate at which they twinkle and combining this with their angular motion in the sky as measured by the VLBA.

In more technical terms, the astronomers are measuring the interstellar scintillation (ISS) of pulsars. ISS is analogous to the twinkling of stars but occurs in the radio signals from celestial sources rather than in optical light. The twinkling of light from distant stars as seen from Earth is caused by the atmosphere. But radio twinkling, or scintillation, results as radio waves travel through interstellar gas and the turbulence that resides in it. Cordes likens the effect to looking down into a pool and seeing the shimmering of sunlight across the bottom. The distortion, he says, "becomes a signal you can study."

To calculate the speed and distance of very faint pulsars will require measurements from both Arecibo Observatory in Puerto Rico and the VLBA. The VLBA is a radio interferometer, consisting of 10, 25-meter (27 yards) dishes spread across the United States from the Virgin Islands to Hawaii. Recorded data from the 10 dishes are played back into a central computer to mimic a single, giant telescope. It produces radio images of compact radio sources with great resolution and quality.

Notes Cordes, "We would like to understand the physics of supernova explosions better. One way to do this is to find new pulsars and measure their velocities in order to identify the fastest speed that can be produced."


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Speeding Stars On Galaxy's Edge Can Now Be Tracked By Radio Telescopes With A Twinkle In Their Eye, Cornell Astronomer Says." ScienceDaily. ScienceDaily, 15 June 1998. <www.sciencedaily.com/releases/1998/06/980615070536.htm>.
Cornell University. (1998, June 15). Speeding Stars On Galaxy's Edge Can Now Be Tracked By Radio Telescopes With A Twinkle In Their Eye, Cornell Astronomer Says. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/1998/06/980615070536.htm
Cornell University. "Speeding Stars On Galaxy's Edge Can Now Be Tracked By Radio Telescopes With A Twinkle In Their Eye, Cornell Astronomer Says." ScienceDaily. www.sciencedaily.com/releases/1998/06/980615070536.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Space & Time News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Soyuz Spacecraft Docks With International Space Station: NASA

Soyuz Spacecraft Docks With International Space Station: NASA

AFP (Nov. 24, 2014) A Russian Soyuz spacecraft carrying Italy's first female astronaut safely docks with the International Space Station, according to NASA. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Multi-National Crew Safely Docks at Space Station

Multi-National Crew Safely Docks at Space Station

Reuters - US Online Video (Nov. 24, 2014) A Russian Soyuz rocket delivers a multi-national trio to the International Space Station. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Raw: Soyuz Docks With Int'l Space Station

Raw: Soyuz Docks With Int'l Space Station

AP (Nov. 23, 2014) A Russian capsule carrying three astronauts from Russia, the United States and Italy has arrived at the International Space Station. (Nov. 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins