Featured Research

from universities, journals, and other organizations

Simple Polymer Moves With Electricity

Date:
July 1, 1998
Source:
Penn State
Summary:
A material originally developed for clear plastic bags may some day be used for artificial muscles, skin and organs that move like the real thing, according to a team of Penn State materials scientists.

UNIVERSITY PARK, Penn.--A material originally developed for clear plastic bags may some day be used for artificial muscles, skin and organs that move like the real thing, according to a team of Penn State materials scientists.

Related Articles


"This polymer is not new, but we can now alter it so it moves much more when an electric field is applied," says Dr. Qi-Ming Zhang, associate professor of electrical engineering and an associate at Penn State's Materials Research Laboratory. "The larger motion is an order of magnitude improvement in performance in acoustics, biomedical instrumentation and artificial organs possible."

Poly(vinylidene fluoride-trifluoroethylene) Copolymer was developed for sturdy, thin-film bags to store blood and other liquids. Researchers have long known that it has weak piezoelectric characteristics. When an electric voltage was placed on the film, the film moved, slightly. When pressure deformed the film, it produced electricity.

"As a piezoelectric material, this polymer was not very promising, the response was very small," says Zhang. "But as an electrostrictive material, the response is much larger and we can actually see it move under a voltage."

Electrostrictive materials are similar to piezoelectric materials, but are not polarized.

Zhang, working with Vivek Bharti and Xin Zhong Zhao, Penn State Postdoctoral Fellows, found a way to alter the polymer and create a material that moved 40 times more than some of the best known materials and is much easier and less expensive to manufacture.

Reporting in today's (June 26) issue of Science, the researchers explained how bombarding the material with electrons altered both the molecular conformation of the material and created new chemical bonds. We insert defects into the material and it becomes more compliant and flexible and has a higher dielectric constant, says Zhang.

Polymer materials consist of long chains that usually look like strands of spaghetti tangled around each other. The electron bombardment causes crosslinks to form between nearby strands and changes the molecular conformation. The altered material has a deformation rate under a high electric field of 4 percent or a 4-inch change for every 100 inches.

"This material is very sturdy, biologically neutral, can be molded in many shapes, is flexible and pliable," says Zhang. "Most electrostrictive materials are brittle ceramics that cannot move very far without breaking. Other known polymers can exhibit similar behavior, but they are very soft."

The flexibility, pliable and ease of manufacture of Poly(vinylidene fluoride-trifluoroethylene) Copolymer make it ideal for improved acoustic transducers for use in medical imaging equipment, underwater detectors and stereo speakers. Because of its high dielectric constant, the material could also be used for capacitors. In the long term, applications as artificial skin that senses touch, drug delivery systems, artificial muscles and organs may all be possible.

While easy to manufacture, pretreatment of the material does makes a difference. The initial material needed to be purer than that used to manufacture thin-film bags. The treatment temperature, annealing, quenching and whether or not the material was stretched also influenced the outcome.

"Eventually, we should be able to fine tune the properties over a large range of values to tailor the material to specific applications," says Zhang.

The researchers would also like to try working with strands or wires of the polymer in addition to thin films.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Simple Polymer Moves With Electricity." ScienceDaily. ScienceDaily, 1 July 1998. <www.sciencedaily.com/releases/1998/07/980701082033.htm>.
Penn State. (1998, July 1). Simple Polymer Moves With Electricity. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/1998/07/980701082033.htm
Penn State. "Simple Polymer Moves With Electricity." ScienceDaily. www.sciencedaily.com/releases/1998/07/980701082033.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins