Featured Research

from universities, journals, and other organizations

High-Intensity Ultrasound Creates Better Catalyst For Cleaning Fuels

Date:
July 9, 1998
Source:
University Of Illinois At Urbana-Champaign
Summary:
Using high-intensity ultrasound, researchers at the University of Illinois have discovered a dramatically improved catalyst for removing smelly sulfur-containing compounds from gasoline and other fossil fuels.

CHAMPAIGN, Ill. - Using high-intensity ultrasound, researchers at the University of Illinois have discovered a dramatically improved catalyst for removing smelly sulfur-containing compounds from gasoline and other fossil fuels. The improved catalyst is a new form of molybdenum disulfide, most commonly recognized as the black lubricant used to grease automobiles and machinery.

Related Articles


Molybdenum disulfide normally consists of long, flat layers of molybdenum metal atoms sandwiched above and below by single atomic layers of sulfur. Because the interaction between the sulfur planes is weak, they can easily slide on one another, providing excellent high-temperature lubrication.

But molybdenum disulfide's other important commercial application is as a catalyst used by the petroleum industry to remove sulfur-containing compounds in gasoline. Upon combustion, these unwanted sulfur compounds would contribute to the formation of ecologically damaging acid rain.

"The flat planes of molybdenum disulfide that make it such a good lubricant also interfere with its ability to react with fuels to remove sulfur," said Kenneth Suslick, a U. of I. professor of chemical sciences. "This is because all the reactions necessary for sulfur removal occur along the edges of the long planes, and the bigger the planes, the less relative edge there is."

Suslick and students Millan Mdleleni and Taeghwan Hyeon discovered a way to make molybdenum disulfide with many more edge atoms using a technique called sonochemistry -- the chemical application of high-intensity ultrasound. The technique produces very small particles of molybdenum disulfide, 1,000 times smaller than the thickness of a human hair, that subsequently do not form into planes.

The sonochemical synthesis arises from acoustic cavitation -- the formation, growth and implosive collapse of small gas bubbles in a liquid blasted with sound. The collapse of these cavitating bubbles generates intense local heating, forming a hot spot in the cold liquid with a transient temperature of about 9,000 degrees Fahrenheit, the pressure of about 1,000 atmospheres and the duration of about a billionth of a second.

"When the bubbles collapse, the vapor of volatile molybdenum-metal-containing compounds inside the bubbles is decomposed into hot metal atoms," Suslick said. "These atoms then react with sulfur dissolved in the liquid to form clusters of molybdenum disulfide that contain a few thousand atoms and are about a millionth of an inch in diameter."

As the researchers reported in the June 24th issue of the Journal of the American Chemical Society, these clusters are too small to have extended planes of atoms and consequently possess many more edge atoms that can participate in the sulfur-removal process.

"Our sonochemically prepared molybdenum disulfide is 10 times more active than the standard industrial catalyst," Suslick said. "The sonochemical synthesis is simple, quick and easy to scale up."


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "High-Intensity Ultrasound Creates Better Catalyst For Cleaning Fuels." ScienceDaily. ScienceDaily, 9 July 1998. <www.sciencedaily.com/releases/1998/07/980709085806.htm>.
University Of Illinois At Urbana-Champaign. (1998, July 9). High-Intensity Ultrasound Creates Better Catalyst For Cleaning Fuels. ScienceDaily. Retrieved January 25, 2015 from www.sciencedaily.com/releases/1998/07/980709085806.htm
University Of Illinois At Urbana-Champaign. "High-Intensity Ultrasound Creates Better Catalyst For Cleaning Fuels." ScienceDaily. www.sciencedaily.com/releases/1998/07/980709085806.htm (accessed January 25, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, January 25, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

NTSB: Missing Planes' Black Boxes Should Transmit Wirelessly

Newsy (Jan. 23, 2015) In light of high-profile plane disappearances in the past year, the NTSB has called for changes to make finding missing aircraft easier. Video provided by Newsy
Powered by NewsLook.com
Iconic Metal Toy Meccano Goes Robotic

Iconic Metal Toy Meccano Goes Robotic

Reuters - Innovations Video Online (Jan. 22, 2015) Classic children&apos;s toy Meccano has gone digital, releasing a programmable kit robot that can be controlled by voice recognition. The toymakers say Meccanoid G15 KS is easy to use and is compatible with existing Meccano pieces. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
The VueXL From VX1 Immersive Smartphone Headset!

The VueXL From VX1 Immersive Smartphone Headset!

Rumble (Jan. 22, 2015) The VueXL from VX1 is a product that you install your smartphone in and with the magic of magnification lenses, enlarges your smartphones screen so that it&apos;s like looking at a big screen TV. Check it out! Video provided by Rumble
Powered by NewsLook.com
Analysis: NTSB Wants Better Black Boxes

Analysis: NTSB Wants Better Black Boxes

AP (Jan. 22, 2015) NTSB investigators recommended Thursday that long-distance passenger planes carry improved technology to allow them to be found more easily in a crash, as well as include enhanced cockpit recording technology. (Jan. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins