Featured Research

from universities, journals, and other organizations

Newly Identified Molecular Mechanism Could Lead To New Approaches For Preventing Heart Attack, Stroke

Date:
August 18, 1998
Source:
University Of California, San Francisco
Summary:
UC San Francisco researchers have identified a molecular mechanism that may play an important role in activating platelets, the blood cells that coagulate to stop bleeding but also cause the clots leading to heart attack and stroke.

UC San Francisco researchers have identified a molecular mechanism that may play an important role in activating platelets, the blood cells that coagulate to stop bleeding but also cause the clots leading to heart attack and stroke. The finding, published in the August 13 issue of Nature, requires further investigation, said the senior author of the study, Shaun R. Coughlin, MD, PhD, director of the Cardiovascular Research Institute (CRVI) and professor of medicine and cellular and molecular pharmacology at UCSF, but it could provide a new avenue for developing drugs for preventing heart attack and stroke.

The study, conducted in mice and on human platelets, explored the way in which the enzyme known as thrombin, one of several factors known to activate platelets, stimulates the blood cells into action. The initial observations in mice led the researchers to a potentially profound finding for humans.

In the mouse study, the researchers determined that thrombin is able to activate platelets by latching onto, and cleaving, a newly identified receptor in the membrane of the cells. When the enzyme (a protease) binds to the receptor, it instigates the transmembrane signaling that prompts platelet aggregation. The researchers named the receptor protease activated receptor (PAR) 4.

The investigators had previously identified a PAR in human platelets, which they named PAR1. They also had previously identified a PAR in mouse platelets, which they named PAR3.

In the current study, they created a mouse model with platelets lacking PAR3 and found that while the mice had a markedly delayed and diminished response to thrombin activation the response was not totally absent. The discovery of PAR4 explained the continued response. "We determined that PAR3 is necessary for normal thrombin responses in mouse platelets, but that PAR4 does contribute to thrombin signaling," said Coughlin.

The discovery that PAR3 and PAR4 appear to act as a dual-receptor system in mice led the researchers to examine whether human platelets also contain PAR4. The discovery that they do suggests that, in human platelets, PAR1 and PAR4 also act as a dual-receptor system. And this suggestion opens up the possibility of designing drugs tailored to this system, said Coughlin.

"It may be necessary to block both PAR1 and PAR4 in human platelets to achieve an antithrombotic effect," he said. "Alternatively," he said, "the existence of a second receptor may provide a useful margin of safety for such potentially powerful therapeutic agents."

Numerous questions about the thrombin system remain to be answered, said Coughlin. The two-receptor system may simply provide redundancy of an important molecular mechanism. Alternatively, it may provide a mechanism for responding to proteases other than thrombin or to thrombin itself over a wider range of concentrations.

"We're initially interested in seeing if there are more receptors involved in the response of platelets to thrombin or whether these two receptors fully account for thrombin signaling," he said.

A still larger question, said Coughlin, is how important the thrombin system as a whole is for activating platelets. Laboratory studies indicate that thrombin is a potent stimulator of platelets, but other factors contribute to platelet aggregation, as well. "Thrombin is a potent activator of platelets under experimental conditions, but other activators are known, and the question of what happens when platelets in living animals or people cannot respond to thrombin has not been answered. We suspect thrombin plays a critical role, but that role has yet to be proven conclusively."

Co-investigators of the UCSF study were Mark L. Kahn, MD, an assistant research physician, CVRI, Yao-Wu Zheng, PhD, an associate specialist, CVRI, Wei Huang, MD, a staff research associate, CVRI, Violeta Bigornia, BS, a staff research associate, CVRI, Dewan Zeng, PhD, formerly a postdoctoral fellow, CVRI, Stephen Moff, formerly a Sarnoff Fellow, CVRI, Robert V. Farese Jr., MD, an assistant investigator, Gladstone Institute for Cardiovascular Disease, and Carmen Tam, BS, a staff research associate, CVRI.


Story Source:

The above story is based on materials provided by University Of California, San Francisco. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Francisco. "Newly Identified Molecular Mechanism Could Lead To New Approaches For Preventing Heart Attack, Stroke." ScienceDaily. ScienceDaily, 18 August 1998. <www.sciencedaily.com/releases/1998/08/980818072340.htm>.
University Of California, San Francisco. (1998, August 18). Newly Identified Molecular Mechanism Could Lead To New Approaches For Preventing Heart Attack, Stroke. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/1998/08/980818072340.htm
University Of California, San Francisco. "Newly Identified Molecular Mechanism Could Lead To New Approaches For Preventing Heart Attack, Stroke." ScienceDaily. www.sciencedaily.com/releases/1998/08/980818072340.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins