Featured Research

from universities, journals, and other organizations

UCSF Researchers Identify Molecule Involved In Early Stage Of Atherosclerosis In Mice

Date:
August 28, 1998
Source:
University Of California, San Francisco
Summary:
UC San Francisco researchers have demonstrated in genetically engineered mice that a molecule known as MCP-1 plays a key role in promoting the migration of white blood cells into the lining of arteries, an event that ultimately leads to atherosclerosis.

UC San Francisco researchers have demonstrated in genetically engineered mice that a molecule known as MCP-1 plays a key role in promoting the migration of white blood cells into the lining of arteries, an event that ultimately leads to atherosclerosis.

Related Articles


The finding, reported in the August 27 issue of Nature, provides evidence that MCP-1 is critically involved in the formation of foam cell-laden fatty streaks, a hallmark of atherosclerosis, according to the senior author of the study, Israel F. Charo, MD, PhD, associate director of the UCSF-affiliated Gladstone Institute of Cardiovascular Disease, and a professor of medicine at UCSF.

"We've identified a mechanism whereby oxidized lipids attract monocytes to the vessel wall," said Charo.

"This should encourage pharmaceutical companies to ramp up their efforts to find an antagonist for this receptor."

Researchers have long known that the movement of monocytes, a type of white blood cell, into artery walls is an early step in the development of atherosclerosis. And cell culture studies have provided strong evidence that MCP-1 (monocyte chemoattractant protein-1) is a powerful attractant for monocytes. Significantly, synthesis of MCP-1 in blood vessel wall cells, such as endothelial cells, is upregulated by oxidized lipids.

The Gladstone researchers set out to determine whether MCP-1 was, in fact, the molecular lynch pin between the oxidized lipids resulting from a high-fat diet and the migration of monocytes into the artery wall.

Charo's team examined the outcomes in two sets of mice that were genetically engineered to be highly susceptible to atherosclerosis. One group of mice was also missing the receptor (CCR2) for MCP-1 on monoctyes that allows MCP-1 to have an effect. Both groups of mice were fed a western-type, high-fat diet for five to 13 weeks and then analyzed for signs of atherosclerosis.

The results were dramatic. The first group of mice developed robust lesions on their proximal aortas. In contrast, mice lacking CCR2 had lesions that were nearly 50 percent smaller. In addition, markedly fewer macrophages, the cells that monocytes evolve into once they are in the vessel lining, were present in the aortas of these mice, demonstrating that activation of the receptor was important in the recruitment of monocytes into the vessel wall.

Co-authors of the UCSF study were Landin Boring, PhD, a postdoctoral fellow in the UCSF-affiliated Gladstone Institute of Cardiovascular Disease, Jennifa Gosling, MS, a research associate at the Gladstone and Michael Cleary, a research associate at the Gladstone. The study was funded by grants from the NIH and Gladstone Institute of Cardiovascular Disease.


Story Source:

The above story is based on materials provided by University Of California, San Francisco. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, San Francisco. "UCSF Researchers Identify Molecule Involved In Early Stage Of Atherosclerosis In Mice." ScienceDaily. ScienceDaily, 28 August 1998. <www.sciencedaily.com/releases/1998/08/980828072835.htm>.
University Of California, San Francisco. (1998, August 28). UCSF Researchers Identify Molecule Involved In Early Stage Of Atherosclerosis In Mice. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/1998/08/980828072835.htm
University Of California, San Francisco. "UCSF Researchers Identify Molecule Involved In Early Stage Of Atherosclerosis In Mice." ScienceDaily. www.sciencedaily.com/releases/1998/08/980828072835.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins