Featured Research

from universities, journals, and other organizations

Study Pinpoints Rare Molecular 'Transitions' As Possible Cause Of Skin 'Photoaging'

Date:
September 2, 1998
Source:
Duke University
Summary:
Experimenting with lasers, a biophysical chemistry team now at Duke University has discovered rare, hard-to-detect interactions between skin molecules and sunlight that eventually could cause the uncomplimentary changes characteristic of "photoaging."

DURHAM, N.C.--Experimenting with lasers, a biophysical chemistry team now at Duke University has discovered rare, hard-to-detect interactions between skin molecules and sunlight that eventually could cause the uncomplimentary changes characteristic of "photoaging."

A group led by John Simon, Duke's George B. Geller professor of chemistry, used special sensors to analyze how molecules in the skin, called "chromophores," respond to a range of different wavelengths of ultraviolet light.

The investigators found that wavelengths in the ultraviolet-A (UV-A) range can cause sporadic weak molecular "transitions" in the chromophore urocanic acid. Those changes, they also discovered, can raise the energy level of oxygen molecules to a damaging "singlet" state.

UV-A, a commonplace group of wavelengths in sunlight that reaches Earth's surface, has already been linked to skin photoaging, which produces "deep lines," a "leathered appearance" and a "sagging of the skin's surface typically associated with old age," Simon and another researcher wrote in a report on the findings.

Authored by Simon and Kerry Hanson, his former doctoral student now at the University of Illinois in Champagne-Urbana, that report is published in the Sept. 1 issue of the Proceedings of the National Academy of Sciences. Their research, supported by the National Institute of General Medical Sciences, began at the University of California at San Diego, where Simon's team previously worked.

Urocanic acid, a breakdown product formed as the outer layer of cells in skin die, is among the chromophores known to absorb approximately the same wavelengths of sunlight as does DNA in living skin, Simon said in an interview. Urocanic acid thus was thought to help protect DNA in living skin from ultraviolet light damage, which can lead to cancer.

The molecule was even used for a time as a sun screen ingredient. But manufacturers in the United States agreed to a voluntary ban, Simon said, after George Washington University researchers discovered that a rearrangment of urocanic acid, called the cis-isomer, is formed by the absorption of sunlight and may impair the immune system.

Separate medical research also had established that normal exposure to the UV-A wavelengths of sunlight can cause the photochemical formation of the cis-isomer.

"There were many features of urocanic acid's photobiology that were not understood," Simon added. "One of them was that the chemistry of the molecule depends on the light wavelength that hits it, especially in the UV-A. We've spent the last two years sorting that out."

Using a special neodynium-YLF (yttrium lithium fluoride) laser, Simon's group began a detailed study of urocanic acid's "absorption spectrum" essentially what percentage of each different wavelength the molecule actually absorbs. The researchers also employed sensors that can detect how the molecule uses the light energy it absorbs over different scales of time.

With those tools, the team learned that urocanic acid responds to ultraviolet-A in very complex ways. Starting at UV-A wavelengths of about 320 billionths of a meter, urocanic acid retains an increasing amount of the sunlight energy it absorbs, reaching a maximum at 340, Simon's and Hanson's report said.

At its maximum, the absorbed energy is "almost three times the energy difference between the two isomers of UV-A," the authors wrote. "Consequently, we can conclude that photoisomerization is not the sole photochemical process that is initiated by UV-A exposure."

That additional energy, the authors' evidence suggests, forms an extra intermediate state of the molecule lasting longer than hundreds of billionths of a second. "Essentially, the absorption spectrum is comprised of transitions to two different electronic states, and those states react differently with different rates," Simon said.

The new transition that they discovered leads to an intermediate state that can transfer its energy to a nearby oxygen molecule to form damaging "singlet" oxygen molecules, the PNAS report added.

The term "singlet" refers to the spin states of a molecule's most excited electrons. With electrons in the singlet state, oxygen is likely to break existing chemical bonds and form new ones, Simon said. "That's why singlet oxygen is so devastating. It's highly reactive."

Examining the medical literature on the "action spectra" of trans-urocanic acid, action spectra are those wavelengths of light shown to induce physical changes, Simon's team concluded that singlet oxygen may be responsible for initiating chemical processes that lead to photoaging.

"Singlet oxygen has always been thought to be involved in photoaging," he added. "But there was never any direct link between a physiological action spectrum for that type of behavior and a molecular absorption process. Now there is."

The observation that singlet oxygen formation involves weak transitions may explain why photoaging is a long-term process, Simon said.

"Urocanic acid in UV-A doesn't absorb very strongly, so most of the photons (particles of light) will pass through," he said. "But, every now and then, it will grab a photon. And when it does, there's a good chance that's going to make singlet oxygen.

"The initiating molecule has a weak efficiency for absorbing the light, but when it does, it's highly efficient in causing the damaging event."


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "Study Pinpoints Rare Molecular 'Transitions' As Possible Cause Of Skin 'Photoaging'." ScienceDaily. ScienceDaily, 2 September 1998. <www.sciencedaily.com/releases/1998/09/980902053809.htm>.
Duke University. (1998, September 2). Study Pinpoints Rare Molecular 'Transitions' As Possible Cause Of Skin 'Photoaging'. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/1998/09/980902053809.htm
Duke University. "Study Pinpoints Rare Molecular 'Transitions' As Possible Cause Of Skin 'Photoaging'." ScienceDaily. www.sciencedaily.com/releases/1998/09/980902053809.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Nigeria Beat Its Ebola Outbreak

How Nigeria Beat Its Ebola Outbreak

Newsy (Oct. 20, 2014) The World Health Organization has declared Nigeria free of Ebola. Health experts credit a bit of luck and the government's initial response. Video provided by Newsy
Powered by NewsLook.com
Another Study Suggests Viagra Is Good For The Heart

Another Study Suggests Viagra Is Good For The Heart

Newsy (Oct. 20, 2014) An ingredient in erectile-dysfunction medications such as Viagra could improve heart function. Perhaps not surprising, given Viagra's history. Video provided by Newsy
Powered by NewsLook.com
Ebola Worries End for Dozens on U.S. Watch Lists

Ebola Worries End for Dozens on U.S. Watch Lists

Reuters - US Online Video (Oct. 20, 2014) Forty-three people who had contact with Thomas Eric Duncan, the first person diagnosed with Ebola in the U.S., were cleared overnight of twice-daily monitoring after 21 days of showing no symptoms. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
CDC Calls for New Ebola Safety Guidelines

CDC Calls for New Ebola Safety Guidelines

AP (Oct. 20, 2014) Centers for Disease Control and Prevention Director Dr. Tom Frieden laid out new guidelines for health care workers when dealing with the deadly Ebola virus including new precautions when taking off personal protective equipment. (Oct. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins