Featured Research

from universities, journals, and other organizations

New Technique Reveals Identity Of Near-Neighbor Atoms

Date:
September 18, 1998
Source:
Lawrence Berkeley National Laboratory
Summary:
In a development that holds much promise for future studies of surfaces and interfaces in solid materials, including magnetic, environmental, and biological systems, researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory have successfully tested a method that not only directly determines the identity of a specific atom in a sample, but also directly determines the identities of its neighbors.

BERKELEY -- In a development that holds much promise for future studies of surfaces and interfaces in solid materials, including magnetic, environmental, and biological systems, researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory have successfully tested a method that not only directly determines the identity of a specific atom in a sample, but also directly determines the identities of its neighbors. Called MARPE, for Multi-Atom Resonant PhotoEmission, this new technique was developed at Berkeley Lab's Advanced Light Source (ALS).

"This is one of those rare occasions where you go after something and it turns out much better than you expected," says the leader of the MARPE research, Charles Fadley, a physicist affiliated with Berkeley Lab's Materials Sciences Division and a professor of physics with the University of California at Davis.

Fadley is one of the world's foremost practitioners of photoelectron spectroscopy (PES), a technique in which an element in a sample is identified through the energies of the electrons it emits when excited by a beam of photons. PES is one of several soft x-ray-based spectroscopy or diffraction methods that are element-specific, meaning they can be used to determine the identity of a central atom in an atomic structure. None of these methods, however, can be used to directly determine the types of atoms that neighbor this central atom.

"MARPE is an effect in soft x-ray absorption that provides a direct probe of near-neighbor atoms," says Fadley. "It also gives scientists a new way of studying the chemical bonds between two or more different types of atoms."

Like PES and other x-ray-based spectroscopy techniques, MARPE works because all atoms have characteristic energies that bind electrons to their inner or core levels (as opposed to their outer or valence levels). These energies, the minimum needed to excite a core electron, serve as "fingerprints" that can be used to identify the atom. The MARPE effect occurs when the energy of an incoming photon beam matches a specific core-level excitation energy of a neighbor atom to the atom being directly excited by the photons. The photons "resonate" with the core level of this neighbor atom, sharply intensifying the observed photoelectron signal emitted from the central atom. This neighbor atom resonance reveals the presence and identity of the neighboring atom.

"It is like a chorus effect in which the neighboring atoms begin singing in tune and pass their collective excitement to the central atom," explains Fadley. "A preliminary theoretical analysis told us we would see this effect, but our theoretical predictions were about four times smaller than the experimental results."

The MARPE effect was first observed in solid compounds containing metal oxides, with the measurements being made at what may be the world's most extensive surface science experimental station ever to be linked to a synchrotron radiation beamline. Designed and assembled under the leadership of Fadley and ALS scientist Zahid Hussain, this station contains, among other features, a photoelectron spectrometer that can be rotated through a 60 degree angle so as to record signal intensities above a surface for a choice of photon polarizations and sample orientations. The station is located at ALS beamline 9.3.2, a bend-magnet that produces photons between 30 and 1500 electron volts in energy.

"This is an experiment that could only have been done with soft x-rays," says Fadley. The flux of the ALS beam, in combination with the unique capabilities of his experimental station, was also essential to the success of the project. "Without the rotational component of our spectrometer, we could not have recorded the two sets of data that confirmed the reality of the effect we observed."

The metal-oxide results, which were reported in the July 31, 1998 issue of the journal Science, indicated that MARPE should be sensitive to chemical bond types and distances, and to magnetic order. Since the Science paper, Fadley's group has demonstrated that the effects should also be observable through x-ray fluorescence and Auger decay, which means MARPE should be applicable to a broad range of samples. Though tested so far on single crystals, MARPE should also be observable in non-crystalline materials. New measurements at the ALS by researchers from the University of Nevada also show that similar effects occur in gas-phase molecules.

"MARPE should be applicable to any solid surface or interface containing elements that have a decent core level," Fadley says, "which means any element from beryllium on up the periodic table."

Collaborating with Fadley on this project, in addition to Hussain, were Alexander Kay and Simon Mun, both with UC Davis as well as Berkeley Lab's MSD; Elke Arenholz of U.C. Berkeley's Miller Foundation; Francisco Garcia de Abajo, a visiting scientist from the University of San Sebastian in Spain; Michel Van Hove, of Berkeley Lab's MSD; and Reinhard Denecke, now with Lund University in Sweden.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

For further information and several illustrations, see http://www-als.lbl.gov/als/science/sci_archive/MARPE.html


Story Source:

The above story is based on materials provided by Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Lawrence Berkeley National Laboratory. "New Technique Reveals Identity Of Near-Neighbor Atoms." ScienceDaily. ScienceDaily, 18 September 1998. <www.sciencedaily.com/releases/1998/09/980918071244.htm>.
Lawrence Berkeley National Laboratory. (1998, September 18). New Technique Reveals Identity Of Near-Neighbor Atoms. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/1998/09/980918071244.htm
Lawrence Berkeley National Laboratory. "New Technique Reveals Identity Of Near-Neighbor Atoms." ScienceDaily. www.sciencedaily.com/releases/1998/09/980918071244.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins