Featured Research

from universities, journals, and other organizations

Scientists Finger A Molecular Kingpin In Body's Response To Cigarettes

November 24, 1998
University Of Rochester
Using genetically modified "knock-out" mice, scientists at the University of Rochester Medical Center have produced the strongest evidence yet implicating a specific gene -- the same one that makes us susceptible to the pollutant dioxin -- as a vital link in the chemical cascade whereby cigarette smoke causes cancer.

Using genetically modified "knock-out" mice, scientists at the University of Rochester Medical Center have produced the strongest evidence yet implicating a specific gene -- the same one that makes us susceptible to the pollutant dioxin -- as a vital link in the chemical cascade whereby cigarette smoke causes cancer. The finding comes thanks to a batch of genetically engineered mice normal in every way except for the deletion of the gene for the aromatic hydrocarbon, or AH, receptor; these mice had no damage from the same levels of cigarette smoke that caused significant gene damage in their normal brethren.

Related Articles

The work, reported in the November issue of Carcinogenesis, clarifies how cigarette smoke has an impact on our molecular machinery and should help researchers in their efforts to prevent genetic damage from the biochemical assault posed by smoking.

The team at the University's Environmental Health Science Center cautions that researchers must perform longer-term, larger studies and check in additional ways for evidence of gene damage to understand precisely how cigarette smoke damages our DNA, including the AH receptor's role. However, "It's quite possible that the AH receptor is one of the body's master switches that governs those pathways that control much of the gene damage from cigarette smoke," says principal author Tom Gasiewicz, professor of environmental medicine.

With every breath of cigarette smoke, the body is confronted by more than 4,000 chemicals; animals like humans and mice break some down into harmless byproducts and turn others into more dangerous compounds that wreak havoc throughout the body, breaking up or binding to our DNA and turning on or off important genes. Cancer typically develops because of such damage to several genes. While scientists have long known that every puff of cigarette smoke causes a molecular melee that plays a role in one-third of all cases of cancer, sorting out the primary culprits has been difficult.

Enter the dioxin research group headed by Gasiewicz, an internationally recognized expert on dioxin who occasionally sports a cap embossed with the words, "Team Dioxin." The chemical is now found in low levels in all animals, including humans; it enters the body mainly through the foods we eat, with its ultimate source in the production of plastics and electronic equipment, herbicides, and combustion from automobiles, power plants and incinerators.

For two decades Gasiewicz has studied how dioxin binds to and manipulates the AH receptor, which plays a key role in determining how our body reads its DNA and controls many genes. Graduate student Stephen Dertinger, who had recently helped develop a technique that uses lasers to assess gene damage while working at Litron Laboratories, suggested taking a look at the effects of cigarette smoke, which counts dioxin-like compounds among its constituents. So the team set out, with funding from the National Institute of Environmental Health Sciences.

Gasiewicz and Dertinger studied "knock-out" mice, animals that scientists have especially crafted for research by deleting a specific stretch of DNA. These mice were supplied by long-time collaborator Allen Silverstone of the SUNY Health Science Center in Syracuse; the animals trace their lineage back to the National Cancer Institute, whose researchers were the first to knock out the AH receptor. For three days the team exposed 20 young adult mice to the equivalent amount of smoke particulates that a human receives from smoking six or seven cigarettes a day.

"These animals were exposed to the same complex mixture of chemicals found in cigarette smoke, not just one highly purified chemical constituent. This is a more realistic model of exposure and is an important distinction between this and many other studies," says Dertinger. After exposure the team analyzed each animal's blood cells, using a laser to measure gene damage faster and with greater sensitivity than conventional microscope-based methods.

While normal mice showed significant amounts of gene damage, mice without the AH receptor showed none. "We were very surprised. This suggests that the genes responsible for DNA damage from cigarettes are controlled predominantly by this receptor," says Gasiewicz.

Gasiewicz and Dertinger note that the result covers only one type of gene damage in a single type of tissue. Specifically, the team measured chromosome breaks in blood cells created in the bone marrow. The team plans to study damage in other tissues, such as the liver and lungs. Gasiewicz also says that longer-term studies to look for some of the ultimate products of damaged genes --tumors -- are necessary.

"Our results show that the AH receptor definitely plays an important role, but more work is necessary before we conclude that it's the most important factor mediating genetic damage from cigarettes," adds Dertinger.

The findings complement recent work by other researchers who have shown that people with an abundance of enzymes known as CYP1A1 or P450 cytochrome molecules are more prone to developing cancer from smoking. The AH receptor turns on these enzymes, and it's long been considered a prime suspect in smoking-related gene damage; a few years ago a team from the University of California at Davis showed in the laboratory that the receptor seems to play an important role in the process. The Rochester team's results are the first to demonstrate the link so dramatically in animals.

"This is a significant study," says Gary Gairola, research professor in the College of Pharmacy at the University of Kentucky and an expert on cigarette smoke toxicology. "The team has used a clear endpoint, micronucleus formation, to cleverly demonstrate the role of the AH receptor in cigarette smoke- induced genetic damage."

The team also discovered a synergistic effect between cigarette smoke and dioxin-like chemicals: The more that such chemicals bind to the AH receptor, the more the receptor churns out enzymes that make cigarette smoke harmful to our bodies. "It's a double whammy," says Gasiewicz: "The dioxins now present in our environment may strengthen cigarettes' cancerous kick."

Intimate knowledge of the molecular targets of cigarette smoke suggests an intriguing line of research: a smoking vaccine, a compound that would somehow protect against the ravages of tobacco smoke. The team has published several papers on designs of AH receptor antagonists, molecules that would tie up the body's receptors and make the body immune to chemicals in cigarette smoke that target the receptor. The team's compounds are very similar to molecules known as "flavonoids" found in foods like broccoli, cabbage and soybeans, all known cancer fighters.

"We all know people who smoked their whole lives but never got lung cancer," says Gasiewicz. "One of the reasons may be differing amounts of receptors such as the AH receptor. Or those people may be exposed to drugs or chemicals in their diet, similar to the antagonists we're designing, that alter the metabolism of cigarette smoke.

"Of course, the best way to limit the harmful effects of cigarette smoke is to avoid exposure completely. Don't smoke: It's that simple."

Story Source:

The above story is based on materials provided by University Of Rochester. Note: Materials may be edited for content and length.

Cite This Page:

University Of Rochester. "Scientists Finger A Molecular Kingpin In Body's Response To Cigarettes." ScienceDaily. ScienceDaily, 24 November 1998. <www.sciencedaily.com/releases/1998/11/981124063313.htm>.
University Of Rochester. (1998, November 24). Scientists Finger A Molecular Kingpin In Body's Response To Cigarettes. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/1998/11/981124063313.htm
University Of Rochester. "Scientists Finger A Molecular Kingpin In Body's Response To Cigarettes." ScienceDaily. www.sciencedaily.com/releases/1998/11/981124063313.htm (accessed October 31, 2014).

Share This

More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins