Featured Research

from universities, journals, and other organizations

Disease Mechanism In Hereditary Dementia Discovered -- Treatment Implications Seen For Alzheimer's And Other Neurodegenerative Diseases

Date:
December 8, 1998
Source:
University Of Pennsylvania Medical Center
Summary:
A new study led by scientists at the University of Pennsylvania Medical Center reveals pivotal characteristics of the disease mechanism underlying a hereditary dementia similar to and often confused clinically with Alzheimer's disease. With a clearer view of the pathology involved, the development of drug therapies to counter the problem becomes possible.

A new study led by scientists at the University of Pennsylvania Medical Center reveals pivotal characteristics of the disease mechanism underlying a hereditary dementia similar to and often confused clinically with Alzheimer's disease. With a clearer view of the pathology involved, the development of drug therapies to counter the problem becomes possible. Indeed, candidate compounds are already being appraised in the laboratory for their therapeutic potential.

Related Articles


A report on the study appears in the December 4 issue of Science.

The research team investigated a dementia linked to more than 10 different genetic flaws on chromosome 17 known as frontotemporal dementia and parkinsonism (FTDP-17). They found that, in FTDP-17, mutant versions of a protein called tau are unable to fulfill one of the protein's crucial roles, which is to stabilize structural elements in neurons called microtubules. In addition to shoring up the scaffolding of a cell, microtubules also form the basis of an intracellular transport system -- especially important in neurons, which have extensions called axons that can reach a full meter through the body. With microtubule assembly disrupted, these cells can die.

"The bottom line here is that there is loss of tau function with these mutations, and the function of tau is to stabilize microtubules," says Virginia M.-Y. Lee, PhD, a professor of pathology and laboratory medicine and senior author on the study. "In neurons, with their long, delicate axons, microtubules are extremely important not only as structural entities but also as a kind of railroad along which the cells move various materials critical to their survival."

The tau protein is also the main component of the abnormal tangles in neurons that, along with amyloid plaques, define Alzheimer's disease. Tau tangles are seen in other dementing diseases, too, such as Pick's disease. Prior to this study, however, scientists had been unable to directly associate tau with a disease-causing mechanism, although they have long suspected that the tangles interfere with cellular processes in some way.

Also, they knew that laboratory mice engineered to develop amyloid plaques to the exclusion of the tangles do not lose neurons nor do they develop disease. In contrast, the tau tangles are signature features in FTDP-17 while the amyloid plaques are not present, yet neuronal death and disease result, pointing to a primary role for the tangles over the plaques.

Still, perhaps because several genetic flaws affecting production of the amyloid protein had been identified in inherited forms of Alzheimer's disease, many neuroscientists have focused their attentions on the plaques. Recent discoveries of genetic errors in hereditary FTDP-17, however, opened the door for the current study, and the results re-emphasize that the disease-causing capability of mutant tau must not be underestimated.

"There's no doubt that tau tangles alone can lead to disease, while you cannot say that for the amyloid plaques," says John Q. Trojanowski, MD, PhD, a professor of pathology and laboratory medicine and coauthor on the study. "These results suggest that sporadically formed tau tangles, similar to those found in hereditary FTDP-17, may be causal features in many neurodegenerative diseases, including Alzheimer's disease."

The findings indicate useful strategies to pursue in pharmaceutical development. Drugs that mimic the properties of normal tau, for example, might be able to stabilize microtubules to slow or stop disease progression. Taxol, better known as an anti-cancer agent, works by stabilizing microtubules to interfere with the rapid cell division seen in cancer. The same action might preserve microtubules in neurodegenerative diseases in which tau pathologies are at work. Taxol, however, is not able to cross the blood-brain barrier to reach diseased neurons, but related compounds might be developed that could reach neuronal targets.

Leaders in the scientific community suggest the new study could lead to further insights.

"These exciting findings provide an important link to understanding how mutations in the tau gene may affect cell function in FTDP-17," says Creighton H. Phelps, PhD, director of the Alzheimer's Disease Research Centers Program at the National Institute on Aging. "The abnormal protein disrupts normal brain cell function, probably leading to cell death. Similar changes occur in other brain diseases, such as Alzheimer's and Pick's disease, and further studies are needed to deduce the common pathological mechanisms involved."

The lead author on the study is Ming Hong, MD. Penn-based coauthors on the study, in addition to Lee and Trojanowski, include Victoria Zhukareva, PhD; Vanessa Vogelsberg-Ragaglia, PhD; and Lee Reed, MD. Additional coauthors are affiliated with the Mayo Clinic Jacksonville (FL); the University of California, Los Angeles; the University of Washington, Seattle; the University of California, San Francisco; and Washington University, St. Louis. Funding for the work was provided by the National Institutes of Health.

The University of Pennsylvania Medical Center's sponsored research and training ranks third in the United States based on grant support from the National Institutes of Health, the primary funder of biomedical research and training in the nation -- $175 million in federal fiscal year 1997. In addition, for the third consecutive year, the institution posted the highest annual growth in these areas -- 17.6 percent -- of the top ten U.S. academic medical centers.


Story Source:

The above story is based on materials provided by University Of Pennsylvania Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania Medical Center. "Disease Mechanism In Hereditary Dementia Discovered -- Treatment Implications Seen For Alzheimer's And Other Neurodegenerative Diseases." ScienceDaily. ScienceDaily, 8 December 1998. <www.sciencedaily.com/releases/1998/12/981208055449.htm>.
University Of Pennsylvania Medical Center. (1998, December 8). Disease Mechanism In Hereditary Dementia Discovered -- Treatment Implications Seen For Alzheimer's And Other Neurodegenerative Diseases. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/1998/12/981208055449.htm
University Of Pennsylvania Medical Center. "Disease Mechanism In Hereditary Dementia Discovered -- Treatment Implications Seen For Alzheimer's And Other Neurodegenerative Diseases." ScienceDaily. www.sciencedaily.com/releases/1998/12/981208055449.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

AAA: Distracted Driving a Serious Teen Problem

AAA: Distracted Driving a Serious Teen Problem

AP (Mar. 25, 2015) While distracted driving is not a new problem for teens, new research from the AAA Foundation for Traffic Safety says it&apos;s much more serious than previously thought. (March 25) Video provided by AP
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Many Don't Know They Have Alzheimer's, But Their Doctors Do

Many Don't Know They Have Alzheimer's, But Their Doctors Do

Newsy (Mar. 24, 2015) According to a new study by the Alzheimer&apos;s Association, more than half of those who have the degenerative brain disease aren&apos;t told by their doctors. Video provided by Newsy
Powered by NewsLook.com
A Quick 45-Minute Nap Can Improve Your Memory

A Quick 45-Minute Nap Can Improve Your Memory

Newsy (Mar. 23, 2015) Researchers found those who napped for 45 minutes to an hour before being tested on information recalled it five times better than those who didn&apos;t. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins