Featured Research

from universities, journals, and other organizations

Stars In Neighboring Galaxy Offer Clues To Mystery Of Dark Matter

Date:
January 8, 1999
Source:
Ohio State University
Summary:
A binary star system in a nearby galaxy may bring astronomers closer to understanding the nature of dark matter, according to Ohio State University researchers.

COLUMBUS, Ohio -- A binary star system in a nearby galaxy may bring astronomers closer to understanding the nature of dark matter, according to Ohio State University researchers.

The location of the binary star system suggests that exotic dark objects such as black holes do not make up the majority of mass in the universe.

"Our findings don't offer definitive proof," said Andrew Gould, associate professor of astronomy at Ohio State, "but we can begin to probe that possibility. It's very exciting."

Astronomers spotted the binary system within the Small Magellanic Cloud (SMC), a galaxy that orbits our own, when this system's gravity bent the rays of light from another star and magnified them like a lens.

Gravitational lensing is what happens when a massive dark object in space, such as a planet, dim star, or black hole, crosses in front of a luminous source star in the background. Here on Earth, we see the star get brighter as the lens crossesin front of it, and then fade as the lens gets farther away. This is what astronomers call a "lensing event."

Gravitational lensing is one of the few ways astronomers may detect the presence of dark, massive objects in our galaxy. If many such objects exist, they could account for the missing mass of the universe.

The dark matter, which may account for up to 99 percent of the mass of the universe, has so far eluded detection by the most powerful instruments such as the Hubble Space Telescope. Astronomers refer to these unseen dark objects as massive compact halo objects, or MACHOs.

The first lensing event in the SMC was discovered by a group of astronomers called the MACHO Collaboration in January 1997. On June 8, 1998, the MACHO Collaboration noticed this second lensing event and alerted another group, the Probing Lensing Anomalies NETwork (PLANET).

Eight institutions including Ohio State make up the PLANET Collaboration. Members gather data from four observatories: Perth Observatory in Bickley, Australia; Canopus Hill Observatory of the University of Tasmania in Hobart, Australia; South African Astronomical Observatory Sutherland, South Africa; and European Southern Observatory in La Silla, Chile.

During the two weeks that the light from this latest event grew to peak intensity, B. Scott Gaudi, a graduate student in astronomy at Ohio State, was coordinating telescope operations. Gaudi sent an announcement of the event to interested members of the astronomical community over the Internet, and directed the operation of the telescope in South Africa to observe the peak brightness of the event. Gaudi also analyzed the telescope data with software that he had developed.

The analysis appears in a paper which has been accepted for publication in the Astrophysical Journal. A preprint of the paper currently appears in an astronomy preprint server on the Internet. The World Wide Web address for the paper is http://xxx.lanl.gov/abs/astro-ph/9807086.

The way in which a gravitational lens bends the light rays of its background star indicates what type of object causes the lens. In this case, the data collected by the PLANET team confirmed that the lens object was a binary star system.

When Gaudi analyzed the data with his software, he was able to calculate the speed at which the binary system was moving through space. "That's what allowed us to distinguish whether this binary was in the halo -- and therefore possibly the dark matter that everybody's looking for -- or whether it was in the SMC," said Gaudi.

"A lens in the SMC would be traveling 10 times slower than a lens in the halo," said Gould. "From our calculations, if this lens was in the SMC, it was moving at roughly 75 kilometers per second. If it was in the halo, it would have been moving much slower, such as 35 kilometers per second. The likelihood that a halo object would travel that slowly is negligible."

The binary star system gave astronomers an especially good view of the event, because the interplay between the two stars' gravitational fields warped the lens effect and magnified the source star to 100 times its normal brightness. "A binary lens causes a distortion in the lens structure," said Gould. "Think of it this way: If you were wearing glasses, and you stood next to a road on a rainy day, you'd notice that raindrops on the glasses distorted round lights of the passing cars into diamond shapes. That's what a binary lens does."

Gould said that while these observations poke some holes in the MACHO hypothesis, they don't prove a competing idea, namely that dark mater is composed of weakly-interacting massive particles, or WIMPS. "Even if we totally ruled MACHOs out, that doesn't mean that dark matter is definitively made up of WIMPS. Before we could say that, someone would have to detect WIMP particles somehow. Our finding is just a step on the road to solving this puzzle."

Other PLANET member institutions include: the Kapteyn Institute, Rijksuniversiteit Groningen, The Netherlands; Space Telescope Science Institute, Baltimore, Maryland; South African Astronomical Observatory, Capetown, South Africa; University of Canterbury, Christchurch, New Zealand; Perth Observatory, Bickley, Western Australia; and Canopus Observatory, Hobart, Tasmania, Australia.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Stars In Neighboring Galaxy Offer Clues To Mystery Of Dark Matter." ScienceDaily. ScienceDaily, 8 January 1999. <www.sciencedaily.com/releases/1999/01/990108081143.htm>.
Ohio State University. (1999, January 8). Stars In Neighboring Galaxy Offer Clues To Mystery Of Dark Matter. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/1999/01/990108081143.htm
Ohio State University. "Stars In Neighboring Galaxy Offer Clues To Mystery Of Dark Matter." ScienceDaily. www.sciencedaily.com/releases/1999/01/990108081143.htm (accessed July 28, 2014).

Share This




More Space & Time News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
How A Solar Flare Could Have Wrecked Earth's Electronics

How A Solar Flare Could Have Wrecked Earth's Electronics

Newsy (July 25, 2014) Researchers say if Earth had been a week earlier in its orbit around the sun, it would have taken a direct hit from a 2012 coronal mass ejection. Video provided by Newsy
Powered by NewsLook.com
Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins