Featured Research

from universities, journals, and other organizations

Novel Material For Displays Eats Less Energy

Date:
February 11, 1999
Source:
University Of Rochester
Summary:
That giant sucking sound coming from your desktop is the computer screen drawing twice as much energy than should be necessary to create a crisp image. University of Rochester scientists are out to change that, unveiling in the Feb. 11 issue of Nature a new class of optical materials that efficiently creates the kind of light prized by manufacturers of displays for computers, televisions, and entertainment systems.

That giant sucking sound coming from your desktop is the computer screen drawing twice as much energy than should be necessary to create a crisp image. University of Rochester scientists are out to change that, unveiling in the Feb. 11 issue of Nature a new class of optical materials that efficiently creates the kind of light prized by manufacturers of displays for computers, televisions, and entertainment systems.

The new materials emit nearly perfect circularly polarized light _ the kind necessary to create 3-D displays and striking color images _ that is hundreds of times more pure than light produced from today's materials. Light emerges by twisting its way through thousands of layers of molecules, spiraling from one side to the other. The material includes special additives, or dopants, that allow it to emit and manipulate color light without color filter arrays, which are necessary in today's display systems.

Whether it's a video game, a movie projector or a computer, a bit of optical wizardry occurs out of sight in a display system. The first step is creating light that is polarized, or whose electric field vibrates in only one of two directions, horizontal or vertical. Today that's done simply by stripping away more than half the light, in the same way that some sunglasses and car windshields cut down glare.

Now a team led by Shaw H. Chen, professor of chemical engineering and materials science and senior scientist at the Laboratory for Laser Energetics (LLE), has made a material that actually emits color polarized light, eliminating the need to dump half the light that a system produces.

"It's the voracious nature of the display drawing on the battery that makes laptops or cell phones so power-hungry," says LLE scientist Ansgar Schmid, who took part in the research. "Half the light must be thrown away. This is not an esoteric problem; it's something millions of people confront every day." One of the reasons 3-D displays aren't available commercially is because they require tremendous power to produce twice as much light as necessary.

The material the team developed is based on liquid crystal technology but is very different from traditional materials. Conventional liquid crystals flow at room temperature, and the rod-like molecules stand at attention when an electric field is applied, giving manufacturers a way to control how light moves through them. Displays on laptop computers, cell phones, watches, and calculators all rely on this technology.

In contrast, the new materials are solid, stable films that are as clear as glass but whose molecules are also highly ordered, unlike normal glass. "This is really liquid crystal glass, because it has characteristics of both glass and liquid crystals," says Chen. "It's also easy to process using current technology."

The materials are actually stacks of layers of molecules, each rotated slightly so that together the molecules form a clear spiral path for light to follow. Altogether the layers, which form themselves spontaneously into this rotational pattern, are anywhere from 4 to 35 microns thick, less than half the thickness of a human hair. When hit with unpolarized light from an ultraviolet source, the materials emit circularly polarized, color light. Residual light is reflected and recycled, rather than absorbed and wasted as in current systems.

Most displays today use linear polarization, even though it's not as efficient as circular polarization, then use additional optical devices to produce color. "Up to now there simply haven't been materials to pursue this avenue of research," Chen says. "We're hoping to make circular polarization an option for display technology."

Besides brighter and more efficient displays, other applications of glassy liquid crystals include laser goggles that selectively filter out laser light at certain wavelengths, electro-optic devices for optical communication, and a new method to chemically convert explosives into useful display materials. Chen says the materials also have potential for optical storage, since at high temperatures they can switch states instantly in response to heat or light. Chen has been invited to discuss the findings as a plenary speaker at an international conference on novel optical materials and applications this summer in Italy.

The patented technology has been licensed exclusively to Kaiser Electronics in Silicon Valley for display and eyewear technologies. The team is working with other companies on other commercial and military applications. Though promising, says Schmid, "It's a lengthy process to the marketplace. There are huge costs involved, and every new idea has to punch through the inertia of the existing technology base."

The work was supported by the National Science Foundation, Air Force Office of Scientific Research, the Ballistic Missile Defense Organization, the Japanese Ministry of International Trade and Industry, Kaiser Electronics, and the University's NSF Center for Photoinduced Charge Transfer and Laboratory for Laser Energetics. Also working on the project were graduate student Dimitris Katsis, research associate John Mastrangelo, applied physicist T. Tsutsui of Kyushu University in Japan, and Tom Blanton of Eastman Kodak.


Story Source:

The above story is based on materials provided by University Of Rochester. Note: Materials may be edited for content and length.


Cite This Page:

University Of Rochester. "Novel Material For Displays Eats Less Energy." ScienceDaily. ScienceDaily, 11 February 1999. <www.sciencedaily.com/releases/1999/02/990211072603.htm>.
University Of Rochester. (1999, February 11). Novel Material For Displays Eats Less Energy. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/1999/02/990211072603.htm
University Of Rochester. "Novel Material For Displays Eats Less Energy." ScienceDaily. www.sciencedaily.com/releases/1999/02/990211072603.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins