Featured Research

from universities, journals, and other organizations

Fake Photosynthesis? Test-Tube System In Science Paper Sheds Light On The Oxygen We Breathe, UD Prof Says

Date:
March 8, 1999
Source:
University Of Delaware
Summary:
A test-tube photosynthesis system--described in the March 5 issue of Science--mimics a metal cluster that helps green plants harness sunlight to turn water into oxygen, says University of Delaware chemist Arnold L. Rheingold, a coauthor of the journal article, who analyzed the Yale University invention.

A test-tube photosynthesis system--described in the March 5 issue of Science--mimics a metal cluster that helps green plants harness sunlight to turn water into oxygen, says University of Delaware chemist Arnold L. Rheingold, a coauthor of the journal article, who analyzed the Yale University invention.

"We owe our lives to oxygen, and virtually all of the oxygen we breathe is produced by plants and some bacteria, through photosynthesis," says Rheingold, one of the world's 10 most frequently cited chemists. "Yet, our understanding of photosynthesis has been limited by its complexity. This relatively simple, artificial system should shed light on how life-giving oxygen is produced on Earth, which points to our origins and how the atmosphere evolved on our planet."

A UD professor of chemistry and biochemistry, Rheingold doesn't foresee any immediate practical uses for fake photosynthesis. In industrial settings, oxygen can already be mass-produced by fractionating liquid air, he notes. But, he adds, "Next-generation solar power will require more efficient water-splitting techniques," so the artificial photosynthesis system may suggest new strategies for converting sunlight into electricity. And, he says, such fundamental knowledge enhances our appreciation of the natural world.

Rheingold teamed up with UD graduate student Louise M. Liable-Sands to precisely map the molecular structure of the test-tube photosynthesis system, developed by Yale graduate student Julian Limburg, lead author of the Science article, with graduate student John S. Vrettos and Profs. Robert H. Crabtree and Gary W. Brudvig.

"I doubt there's a commercial need for the Yale oxygen-making factory," Rheingold says. "But, it may allow us to understand how our planet came to have oxygen. The early environment on Earth was quite inhospitable. The evolution of photosynthetic plants created oxygen and completely changed the atmosphere on our planet. That's an amazing process. Now, we can more fully explore it!"

Mimicking Nature's magic tricks

To change water into one of its constituent elements, dioxygen (O2), the Yale research team needed a catalyst to trigger the reaction. Their solution was a metal-based, "dioxygen-evolving complex (OEC)"--essentially, a metal cluster of two manganese atoms activated by bleach-which serves as the basis of the Photosystem II (PSII).

The synthetic, metal cluster is patterned after a naturally occurring, four-manganese cluster involved in plant functions, says Rheingold, who describes his X-Ray Crystallography Laboratory as "the Supreme Court of chemistry," where researchers worldwide send samples to be deciphered.

The natural protein is highly complex, Rheingold says, and "it would be hard to use a leaf to make oxygen in the lab." So, the Yale scientists painstakingly developed a simpler, synthetic version, which Rheingold describes as "an individual work of art."

When they identified a synthetic complex that seemed to turn water into oxygen, the Yale scientists sent their crystals to Rheingold, who determined the extent to which they resembled their natural cousins. In Rheingold's lab, a single crystal, when bombarded by a beam of X-rays, produced a pattern of scattered beams related to the arrangement of atoms in the molecules in the crystal. Using a computer, the UD researchers could then position the atoms to create a color-coded "map" of the molecular architecture of the Yale sample, Rheingold explains.

To understand X-ray crystallography, he says, "Think of a mirrored disco ball, hanging over a dance floor, reflecting spots of light onto the surrounding walls." Mapping the spots reveals the shape of the disco ball. Similarly, diffracted X-rays can be analyzed to determine a material's structure.

In the case of the metal cluster in the Yale photosynthesis system, he says, "It was a bit of a miracle that we were able to determine the structure because of the inherent weakness of the reflections of this crystal. The structure was solved largely because of the persistence of my graduate student."

###

UD web site - http://www.udel.edu/arcade/arnrhein.htm

Yale web site - http://www.chem.yale.edu/~brudvig/


Story Source:

The above story is based on materials provided by University Of Delaware. Note: Materials may be edited for content and length.


Cite This Page:

University Of Delaware. "Fake Photosynthesis? Test-Tube System In Science Paper Sheds Light On The Oxygen We Breathe, UD Prof Says." ScienceDaily. ScienceDaily, 8 March 1999. <www.sciencedaily.com/releases/1999/03/990308055632.htm>.
University Of Delaware. (1999, March 8). Fake Photosynthesis? Test-Tube System In Science Paper Sheds Light On The Oxygen We Breathe, UD Prof Says. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/1999/03/990308055632.htm
University Of Delaware. "Fake Photosynthesis? Test-Tube System In Science Paper Sheds Light On The Oxygen We Breathe, UD Prof Says." ScienceDaily. www.sciencedaily.com/releases/1999/03/990308055632.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins