Featured Research

from universities, journals, and other organizations

"Self Organizing Maps" Help Analyze Thousands Of Genes

Date:
March 17, 1999
Source:
Whitehead Institute For Biomedical Research
Summary:
Using a sophisticated computer algorithm, a team of scientists at the Whitehead Institute has designed a new technique to analyze the massive amounts of data generated by DNA microarrays, also known as DNA chips. This technique will help scientists decipher how our 100,000 genes work together to keep us healthy and how diseases result when they fail.

Using a sophisticated computer algorithm, a team of scientists at the Whitehead Institute has designed a new technique to analyze the massive amounts of data generated by DNA microarrays, also known as DNA chips. This technique will help scientists decipher how our 100,000 genes work together to keep us healthy and how diseases result when they fail.

Related Articles


"DNA arrays have revolutionized DNA analysis by allowing us to observe the activities of thousands of genes simultaneously," says Todd Golub, research scientist at the Whitehead/MIT Center for Genome Research. "But until now, it's been really difficult to interpret this extraordinarily complex raw data. Our technique is among the first in a new generation of tools that will speed up the analysis of the enormous amounts of genetic data emerging from laboratories worldwide."

Dr. Golub and his colleagues at the Whitehead Institute, Dana-Farber Cancer Institute, Dartmouth Medical School, and the Massachusetts Institute of Technology, report their technique in the March 16 issue of the Proceedings of the National Academy of Sciences. The Whitehead/MIT Center for Genome Research is one of the flagship centers of the U.S. Human Genome Project, the effort to determine the 3 billion letters that make up the human blueprint.

"The core of the technique is an algorithm, called a self-organizing map (SOM), that takes advantage of the fact that many genes in a cell behave similarly," explains Pablo Tamayo, the lead author of the paper and research scientist at the Whitehead Institute. "Instead of having 2,000 individual genes, all doing different things, you might have 25 groups of genes doing similar things."

Tamayo compares the final product of the SOM to an executive summary for CEOs. Rather than having to read every page of a 1,000-page report, CEOs can get an overview of the report by simply reading the summary. "It's impossible to visually inspect every gene," he says. "This method produces a quick scan of what's going on with thousands of genes."

The researchers created a computer package called GENECLUSTER, which organizes the activities of thousands of genes in only minutes. To test GENECLUSTER, they analyzed the genes expressed in several models of leukemia cell growth. In many cases, the algorithm identified genes known to be important in this process, but occasionally it also identified unexpected genes. This finding suggests that the method might be useful in helping to identify the function of unknown genes. "Because genes that have similar functions are generally expressed in the same basic pattern, knowing the expression pattern of a gene could help identify its function," explains Tamayo.

SOMs have been used widely in data mining, particularly for large or messy datasets like stock market data, but this study is the first to apply them to gene analysis.

The study was supported in part by consortium of three companies -- Bristol-Myers Squibb Company; Affymetrix, Inc.; and Millennium Pharmaceuticals Inc.-- that formed a unique corporate partnership to fund a five-year research program in functional genomics at the Whitehead/MIT Genome Center. It was also supported by grants from the National Institutes of Health to the Lander and Dmitrovsky labs.

The paper is titled "Interpreting patterns of gene expression with self-organzing maps: Methods and applications to hematopoietic differentiation." The authors are: Pablo Tamayo, Donna Slonim, and Jill Mesirov, of the Whitehead Institute; Qing Zhu, of the Dana-Farber Cancer Institute; Sutisak Kitareewan and Ethan Dmitrovsky, of the Department of Pharmacology and Toxicology at Dartmouth Medical School; Eric Lander, of the Whitehead Institute and the Massachusetts Institute of Technology; and Todd Golub, of the Whitehead Institute and the Dana-Farber Cancer Institute.


Story Source:

The above story is based on materials provided by Whitehead Institute For Biomedical Research. Note: Materials may be edited for content and length.


Cite This Page:

Whitehead Institute For Biomedical Research. ""Self Organizing Maps" Help Analyze Thousands Of Genes." ScienceDaily. ScienceDaily, 17 March 1999. <www.sciencedaily.com/releases/1999/03/990317060418.htm>.
Whitehead Institute For Biomedical Research. (1999, March 17). "Self Organizing Maps" Help Analyze Thousands Of Genes. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/1999/03/990317060418.htm
Whitehead Institute For Biomedical Research. ""Self Organizing Maps" Help Analyze Thousands Of Genes." ScienceDaily. www.sciencedaily.com/releases/1999/03/990317060418.htm (accessed April 1, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

AFP (Apr. 1, 2015) The governments of Liberia and Sierra Leone have been busy fighting the menace created by the deadly Ebola virus, but illicit drug lords have taken advantage of the situation to advance the drug trade. Duration: 01:12 Video provided by AFP
Powered by NewsLook.com
Stigma Stalks India's Leprosy Sufferers as Disease Returns

Stigma Stalks India's Leprosy Sufferers as Disease Returns

AFP (Apr. 1, 2015) The Indian government declared victory over leprosy in 2005, but the disease is making a comeback in some parts of the country, with more than a hundred thousand lepers still living in colonies, shunned from society. Duration: 02:41 Video provided by AFP
Powered by NewsLook.com
7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com
Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins