Featured Research

from universities, journals, and other organizations

University Of Pittsburgh Involved In First Successful Example Of Gene Therapy For Pain Control

Date:
March 17, 1999
Source:
University Of Pittsburgh Medical Center
Summary:
Using a patented gene vector developed by the University of Pittsburgh, a University of South Carolina-led research team is the first to show that gene therapy blocks certain pain responses in animals. This landmark study, which paves the road for future clinical research, is published in the March 16 issue of the Proceedings of the National Academy of Sciences.

PITTSBURGH, March 16 -- Using a patented gene vector developed by the University of Pittsburgh, a University of South Carolina-led research team is the first to show that gene therapy blocks certain pain responses in animals. This landmark study, which paves the road for future clinical research, is published in the March 16 issue of the Proceedings of the National Academy of Sciences.

Related Articles


"Our research results clearly show that pain-associated behaviors diminished in mice treated with a herpes virus containing a gene that triggers production of a pain-blocking protein," said Joseph Glorioso, Ph.D., developer of the gene vector and professor and chairman of the department of molecular genetics and biochemistry at the University of Pittsburgh. "Our vector continued to produce this protein up to seven weeks after it was introduced into these animals, suggesting that this therapy may provide long-term pain relief if used clinically," added Dr. Glorioso, who also directs the Pittsburgh Human Gene Therapy Center.

Steven Wilson, Ph.D., professor of pharmacology and physiology at the University of South Carolina, who initiated this project while on sabbatical at the University of Pittsburgh, led the research team. David C. Yeomans, Ph.D., of the University of Illinois at Chicago, designed and performed the experiments demonstrating production of the pain-blocking protein and its pain-preventing effects.

The research team expects that within several years this approach could be used broadly to treat debilitating pain associated with cancer, arthritis, angina and peripheral neuropathies. Currently, these problems are often treated with narcotic-based medications given systemically, which can cause generalized side effects such as mental confusion and lethargy. Moreover, they are potentially addictive and in some cases ineffective for complete relief of pain.

Specifically, Dr. Wilson's team found that the gene acted on C-type neurons, which transmit information felt as slow, burning pain by humans. This observation is particularly encouraging for future clinical applications, according to the investigators, because C-type neurons are thought to be the primary transmitters of chronic pain.

"The gene-vector-based therapy, in contrast to current pain control methods, is highly localized, and the release of the potentially pain-relieving substance is self-limiting because it is triggered only when the nerves encounter hyper-stimulation," added Dr. Wilson.

"Our engineered herpes virus used for this research is exceptionally well-suited to deliver genes for pain relief," according to Dr. Glorioso.

The herpes virus resides exclusively in neurons and does not integrate with the host cell's DNA, where it could potentially alter the function of other genes. Further, the herpes virus is capable of transporting large genes or multiple genes required to carry out biological processes, such as regulating insulin production for the treatment of diabetes or producing multiple hormones that protect neurons against the destructive effects of neuropathologic conditions, including chemotherapy-induced damage.

Experiment Details: In their experiments, the investigators used a gene for preproenkephalin. Once produced inside the body, this substance is enzymatically processed into opiate-like peptides known as enkephalins. The researchers placed the gene inside a herpes virus capable of establishing latency in the nervous system, a state where the viral genes are inactive while the enkephalin gene remains active. The researchers transferred the gene-containing virus to the paws of mice, where it naturally infected sensory neurons, including those that respond to noxious stimuli such as heat.

"These results are quite exciting, because we don't interfere with an animal?s ability to detect a noxious stimulant and react to danger," said Dr. Wilson. "Only when sensitivities to noxious stimuli are enhanced, a phenomenon that may be important in chronic pain states, does the gene therapy act, with the result that gene-treated animals respond more slowly to this hyper-stimulation than do untreated ones," he added.

For more information about the University of Pittsburgh's Human Gene Therapy Center, please access http://www.pitt.edu/~rsup/phgt.


Story Source:

The above story is based on materials provided by University Of Pittsburgh Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pittsburgh Medical Center. "University Of Pittsburgh Involved In First Successful Example Of Gene Therapy For Pain Control." ScienceDaily. ScienceDaily, 17 March 1999. <www.sciencedaily.com/releases/1999/03/990317060656.htm>.
University Of Pittsburgh Medical Center. (1999, March 17). University Of Pittsburgh Involved In First Successful Example Of Gene Therapy For Pain Control. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/1999/03/990317060656.htm
University Of Pittsburgh Medical Center. "University Of Pittsburgh Involved In First Successful Example Of Gene Therapy For Pain Control." ScienceDaily. www.sciencedaily.com/releases/1999/03/990317060656.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins