Featured Research

from universities, journals, and other organizations

Reversible Process For Forming Supramolecular Polymers Could Be The Basis Of Fibers, Molecular Transport Mechanisms

Date:
March 23, 1999
Source:
Virginia Tech
Summary:
Virginia Tech chemistry graduate student Nori Yamaguchi and professor Harry W. Gibson are using the basic, familiar tool of hydrogen bonding to allow self-assembly to create large aggregate structures for the creation of fibers or for transport of target molecules.

Virginia Tech chemistry graduate student Nori Yamaguchi and professor Harry W. Gibson are using the basic, familiar tool of hydrogen bonding to allow self-assembly to create large aggregate structures for the creation of fibers or for transport of target molecules. In presentations at the 217th American Chemical Society national meeting in Anaheim March 21-26, the chemists will describe how, using the same components -- crown ethers as hosts and secondary ammonium ions as guests, they have created two different, novel, and reversible structures based on hydrogen-bonding.

Related Articles


In one process, a linear supramolecular pseudorotaxane polymer is formed that can be drawn into fibers. The structure is the threading of one molecular component through another to form a linear aggregate that can be undone at the molecular level, using heat or pH.

Yamaguchi and Gibson were the first to demonstrate the linear array. The work was first published in Angewandte Chemie just this year. (Angew. Chem. Int. Ed. 1999, 38, No. 1/2: "Formation of Supramolecular Polymers from Homoditopic Molecules Containing Secondary Ammonium Ions and Crown Ether Moieties," by Yamaguchi and Gibson.)

The second arrangement of the same components resulted in dendritic pseudorotaxanes. Benzyl ether dendrons (wedge shaped molecules) with crown ether hosts at the "focal point" assemble in layers on a three-armed ammonium salt to form a macromolecular aggregate.

The huge supramolecule takes three days to form. Again the process was first described in Angewandte Chemie. (Angew. Chem. Int. Ed. 1998, 37, No. 23: "Dendritic Pseudorotaxanes," by Yamaguchi, Lesley M. Hamilton, and Gibson.) The result is "kind of a glob," says Gibson. Within the glob are pockets of a specific size that can be used to trap target molecules, which can then be transported and released by reversing the construction of the dendrimer. Gibson explains that the structures are sensitive to pH and synthesis can be reversed by exposure to base.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "Reversible Process For Forming Supramolecular Polymers Could Be The Basis Of Fibers, Molecular Transport Mechanisms." ScienceDaily. ScienceDaily, 23 March 1999. <www.sciencedaily.com/releases/1999/03/990323045900.htm>.
Virginia Tech. (1999, March 23). Reversible Process For Forming Supramolecular Polymers Could Be The Basis Of Fibers, Molecular Transport Mechanisms. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/1999/03/990323045900.htm
Virginia Tech. "Reversible Process For Forming Supramolecular Polymers Could Be The Basis Of Fibers, Molecular Transport Mechanisms." ScienceDaily. www.sciencedaily.com/releases/1999/03/990323045900.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Who Will Failed Nuclear Talks Hurt Most?

Who Will Failed Nuclear Talks Hurt Most?

Reuters - Business Video Online (Nov. 25, 2014) With no immediate prospect of sanctions relief for Iran, and no solid progress in negotiations with the West over the country's nuclear programme, Ciara Lee asks why talks have still not produced results and what a resolution would mean for both parties. Video provided by Reuters
Powered by NewsLook.com
Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Flying Enthusiast Converts Real-Life Aircraft Cockpit Into Simulator

Reuters - Innovations Video Online (Nov. 25, 2014) A virtual flying enthusiast converts parts of a written-off Airbus aircraft into a working flight simulator in his northern Slovenian home. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins