Featured Research

from universities, journals, and other organizations

Reversible Process For Forming Supramolecular Polymers Could Be The Basis Of Fibers, Molecular Transport Mechanisms

Date:
March 23, 1999
Source:
Virginia Tech
Summary:
Virginia Tech chemistry graduate student Nori Yamaguchi and professor Harry W. Gibson are using the basic, familiar tool of hydrogen bonding to allow self-assembly to create large aggregate structures for the creation of fibers or for transport of target molecules.

Virginia Tech chemistry graduate student Nori Yamaguchi and professor Harry W. Gibson are using the basic, familiar tool of hydrogen bonding to allow self-assembly to create large aggregate structures for the creation of fibers or for transport of target molecules. In presentations at the 217th American Chemical Society national meeting in Anaheim March 21-26, the chemists will describe how, using the same components -- crown ethers as hosts and secondary ammonium ions as guests, they have created two different, novel, and reversible structures based on hydrogen-bonding.

In one process, a linear supramolecular pseudorotaxane polymer is formed that can be drawn into fibers. The structure is the threading of one molecular component through another to form a linear aggregate that can be undone at the molecular level, using heat or pH.

Yamaguchi and Gibson were the first to demonstrate the linear array. The work was first published in Angewandte Chemie just this year. (Angew. Chem. Int. Ed. 1999, 38, No. 1/2: "Formation of Supramolecular Polymers from Homoditopic Molecules Containing Secondary Ammonium Ions and Crown Ether Moieties," by Yamaguchi and Gibson.)

The second arrangement of the same components resulted in dendritic pseudorotaxanes. Benzyl ether dendrons (wedge shaped molecules) with crown ether hosts at the "focal point" assemble in layers on a three-armed ammonium salt to form a macromolecular aggregate.

The huge supramolecule takes three days to form. Again the process was first described in Angewandte Chemie. (Angew. Chem. Int. Ed. 1998, 37, No. 23: "Dendritic Pseudorotaxanes," by Yamaguchi, Lesley M. Hamilton, and Gibson.) The result is "kind of a glob," says Gibson. Within the glob are pockets of a specific size that can be used to trap target molecules, which can then be transported and released by reversing the construction of the dendrimer. Gibson explains that the structures are sensitive to pH and synthesis can be reversed by exposure to base.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "Reversible Process For Forming Supramolecular Polymers Could Be The Basis Of Fibers, Molecular Transport Mechanisms." ScienceDaily. ScienceDaily, 23 March 1999. <www.sciencedaily.com/releases/1999/03/990323045900.htm>.
Virginia Tech. (1999, March 23). Reversible Process For Forming Supramolecular Polymers Could Be The Basis Of Fibers, Molecular Transport Mechanisms. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/1999/03/990323045900.htm
Virginia Tech. "Reversible Process For Forming Supramolecular Polymers Could Be The Basis Of Fibers, Molecular Transport Mechanisms." ScienceDaily. www.sciencedaily.com/releases/1999/03/990323045900.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins