Featured Research

from universities, journals, and other organizations

"Smart" Fire-Resistant Polymers Under Study For Use In Aircraft

Date:
March 25, 1999
Source:
American Chemical Society
Summary:
Research into new polymers targeted for aircraft safety shows that they are much more fire-resistant than current materials and, when heated, actually produce water vapor and leave a nearly nonflammable residue.

New Materials More Protective and Actually Produce Water Vapor

Related Articles


ANAHEIM, Calif., March 23 -- Research into new polymers targeted for aircraft safety shows that they are much more fire-resistant than current materials and, when heated, actually produce water vapor and leave a nearly nonflammable residue.

The new findings, reported here today at a national meeting of the American Chemical Society, the world's largest scientific society, are expected to help prevent some of the deaths in "survivable" airplane accidents, 40 percent of which are due to fires.

The polymer research conducted at the University of Massachusetts Amherst and the Federal Aviation Administration is part of an ongoing series of studies into new fire-resistant polymers, sponsored by a government and industry consortium created to improve aircraft safety.

"If you look around in an aircraft, most of what you see is not metal, it's polymeric the walls, the bins, the seats, the windows, just about everything except the chair supports," says University of Massachusetts Professor Phillip Westmoreland, lead author of the study. Although polymers don't actually burn, Westmoreland points out, they decompose from heat and many of them produce gases that burn.

"Forty percent of fatalities in impact-survivable accidents are due to fire," adds co-researcher Richard Lyon, FAA program manager for fire research and fire safety in Atlantic City, N.J., referring to statistics for large transport aircraft operated by U.S. carriers. About half of the total deaths in passenger airline accidents, according to the FAA, occur in non-survivable crashes, such as might happen when a plane hits a mountain. The other 50 percent of the deaths occur in what are generally considered impact-survivable accidents, such as runway collisions causing ignition of spilled fuel.

Two new experimental techniques, requiring only extremely small amounts of material (milligrams), were developed by the researchers to measure the combustibility of the new polymer. Using the techniques to evaluate the polymer, known as PHA (polyhydroxyamide), they found it decomposed very little in contrast to other polymers. The PHA that did decompose was converted to water vapor and another nearly nonflammable polymer. "Quantum molecular modeling established how the decomposition gave water and a different type of solid polymer, PBO (polybenzoxazole), that is extremely fire-resistant," notes Westmoreland.

So, why not just start with PBO instead of PHA? "You can't start with PBO because it is too hard to make into useful products, such as fabrics or panels," says Westmoreland. "PHA is a 'smart' fire-safe material. It can be made and processed by mild 'green chemistry' processes, yet when subjected to fire dangers, it converts into strong, stable PBO."

PHA has potential applications beyond aircraft, according to Westmoreland. "The Army Materiel Division in Natick, Mass., has a crash three- year program to come up with more fire-safe clothing for military uniforms," he notes. The new testing techniques also are useful for other new materials, he says, because it makes it possible to test very small samples efficiently, thereby reducing the need to spend time and money producing large amounts of the new material for analysis.

The key to this study's success, Westmoreland points out, is the integrated approach of polymer synthesis, flammability testing and molecular modeling.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. ""Smart" Fire-Resistant Polymers Under Study For Use In Aircraft." ScienceDaily. ScienceDaily, 25 March 1999. <www.sciencedaily.com/releases/1999/03/990325052952.htm>.
American Chemical Society. (1999, March 25). "Smart" Fire-Resistant Polymers Under Study For Use In Aircraft. ScienceDaily. Retrieved March 26, 2015 from www.sciencedaily.com/releases/1999/03/990325052952.htm
American Chemical Society. ""Smart" Fire-Resistant Polymers Under Study For Use In Aircraft." ScienceDaily. www.sciencedaily.com/releases/1999/03/990325052952.htm (accessed March 26, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, March 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Amazon Complains U.S. Is Too Slow To Regulate Drones

Amazon Complains U.S. Is Too Slow To Regulate Drones

Newsy (Mar. 25, 2015) Days after getting approval to test certain commercial drones, Amazon says the Federal Aviation Administration is dragging its feet on the matter. Video provided by Newsy
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
China Wants to Export Its Steel Problem

China Wants to Export Its Steel Problem

Reuters - Business Video Online (Mar. 25, 2015) China is facing a crisis with a glut of steel and growing public anger over the pollution created by production. In a move to solve the problem, some steel mills are looking to relocate overseas. Jane Lanhee Lee reports. Video provided by Reuters
Powered by NewsLook.com
Robot Stays on Its Feet Despite Punishment

Robot Stays on Its Feet Despite Punishment

Reuters - Innovations Video Online (Mar. 24, 2015) Robotic engineers have modelled a two-legged robot to be fast and agile like an ostrich. The design is more efficient and stable than bipedal robots built to move like humans, according to its creators who abuse the poor machine to test its skills. Ben Gruber has more. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins