Featured Research

from universities, journals, and other organizations

Simulation Reveals Very First Stars That Formed In The Universe

Date:
March 25, 1999
Source:
University Of Illinois At Urbana-Champaign
Summary:
At a meeting of the American Physical Society today (March 24), astronomers announced they have turned back the hands of time and taken a look at the earliest structures that formed in the universe. "The very first objects to form were low-mass clusters of metal-free stars that condensed in the cores of dark-matter halos," said Mike Norman, a professor of astronomy at the University of Illinois and a researcher at the university's National Center for Supercomputing Applications.

ATLANTA -- At a meeting of the American Physical Society today (March 24), astronomers announced they have turned back the hands of time and taken a look at the earliest structures that formed in the universe. "The very first objects to form were low-mass clusters of metal-free stars that condensed in the cores of dark-matter halos," said Mike Norman, a professor of astronomy at the University of Illinois and a researcher at the university's National Center for Supercomputing Applications. Norman and his colleagues used numerical cosmology to examine the earliest gravitationally bound astrophysical objects.

Related Articles


"Numerical cosmology usually involves simulating the large structures in the universe -- the formation of galaxies and clusters of galaxies," Norman said. "But you can use the same numerical and physical approaches to study the very first structures that formed from the Big Bang."

Theorists had proposed a number of likely candidates for the first cosmological objects -- from Jupiter-size "clumpuscules" to brown dwarfs to massive black holes.

"What we found in our simulation, however, were tiny star clusters, each containing about 1,000 to 10,000 solar masses," Norman said. "Although these were low-mass clusters, each star was massive - typically containing 100 solar masses. Because the stars were so massive, they were blown to bits long ago." A star's lifetime is determined by its mass. The greater the mass, the more rapidly a star will consume its nuclear fuel. As a star ages, it produces heavier elements through nuclear fusion. Massive stars typically end their days as supernovae that spew shock waves and heavy elements into space, triggering another generation of star formation.

The first star clusters likely formed between 50- and 100-million years after the Big Bang, Norman said. "But because they disappeared so long ago, we are basically studying a ghost that physics tells us once existed, but which we can't see anymore."

Today, the oldest visible objects are globular star clusters -- densely packed systems containing around one million solar masses. "It is probable that the earliest clusters, through a process of continued star formation, metal enrichment and mergers, eventually aggregated into these globular clusters," Norman said.

The initial conversion of gas into stars was highly inefficient and produced a very small number of stars, Norman said. "Probably less than 1 percent of the gas in these primordial clouds actually cooled and collapsed to sufficiently high densities to form stars, so there was plenty of fuel left over to make more stars. But these early star clusters were the 'spark plugs' that started the whole thing off."

The simulation used by Norman and his colleagues includes relevant dark matter dynamics, chemical and radiative processes, nonlinear hydrodynamics, and nonequilibrium physics to determine the collapse and possible fragmentation of gravitationally and thermally unstable primordial gas clouds. Density perturbations within the gas clouds initially created compact objects called halos, which then condensed into the first stars.

A major technical accomplishment -- called adaptive mesh refinement -- made the high-resolution simulation possible. The technique employs an algorithm that can collapse the resolution from cosmological scales down to the scale of an individual star.

"Our three-dimensional adaptive mesh refinement code utilizes an adaptive hierarchy of resolution grids to achieve an extremely high spatial dynamic range," Norman said. "A smart algorithm places subgrids around regions of high interest, and these subgrids then use even finer grid cells to increase the local resolution. So, we have a numerical grid that can zoom in automatically and adaptively to as fine a level of detail as is required by the solution."

The adaptive mesh refinement code was developed by Greg Bryan at the Massachusetts Institute of Technology. Tom Abel, at the Max Planck Institute for Astrophysics in Garching, Germany, developed the nonequilibrium chemical model of the primordial gas.

Funding for the project came from NASA and the National Science Foundation.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Simulation Reveals Very First Stars That Formed In The Universe." ScienceDaily. ScienceDaily, 25 March 1999. <www.sciencedaily.com/releases/1999/03/990325054316.htm>.
University Of Illinois At Urbana-Champaign. (1999, March 25). Simulation Reveals Very First Stars That Formed In The Universe. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/1999/03/990325054316.htm
University Of Illinois At Urbana-Champaign. "Simulation Reveals Very First Stars That Formed In The Universe." ScienceDaily. www.sciencedaily.com/releases/1999/03/990325054316.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Space & Time News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Hubble Sees Rare 'Einstein Cross' Image Of Distant Supernova

Hubble Sees Rare 'Einstein Cross' Image Of Distant Supernova

Newsy (Mar. 5, 2015) — A rare trick of the light caused by the gravity of a distant galaxy caused Hubble to see four images of the same supernova at once. Video provided by Newsy
Powered by NewsLook.com
What's Up March 2015

What's Up March 2015

NASA (Mar. 4, 2015) — A total solar eclipse in the North Atlantic and tips to prepare for the next U.S. eclipse. Video provided by NASA
Powered by NewsLook.com
Raw: SpaceX Launches Rocket, Satellites on Board

Raw: SpaceX Launches Rocket, Satellites on Board

AP (Mar. 2, 2015) — SpaceX launched it&apos;s 16th Falcon 9 rocket from Cape Canaveral, Florida on Sunday night. The rocket was carrying two commercial communications satellites. (March 2) Video provided by AP
Powered by NewsLook.com
NASA EDGE: SMAP Launch

NASA EDGE: SMAP Launch

NASA (Mar. 2, 2015) — Join NASA EDGE as they cover the launch of the Soil Moisture Active Passive (SMAP) spacecraft live from Vandenberg Air Force Base.  Special guests include NASA Administrator Charlie Bolden, SMAP Project System Engineer Shawn Goodman and Lt Col Brande Walton and Joseph Sims from the Air Force.  No word on the Co-Host&apos;s whereabouts. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins