Featured Research

from universities, journals, and other organizations

Simulation Reveals Very First Stars That Formed In The Universe

Date:
March 25, 1999
Source:
University Of Illinois At Urbana-Champaign
Summary:
At a meeting of the American Physical Society today (March 24), astronomers announced they have turned back the hands of time and taken a look at the earliest structures that formed in the universe. "The very first objects to form were low-mass clusters of metal-free stars that condensed in the cores of dark-matter halos," said Mike Norman, a professor of astronomy at the University of Illinois and a researcher at the university's National Center for Supercomputing Applications.

ATLANTA -- At a meeting of the American Physical Society today (March 24), astronomers announced they have turned back the hands of time and taken a look at the earliest structures that formed in the universe. "The very first objects to form were low-mass clusters of metal-free stars that condensed in the cores of dark-matter halos," said Mike Norman, a professor of astronomy at the University of Illinois and a researcher at the university's National Center for Supercomputing Applications. Norman and his colleagues used numerical cosmology to examine the earliest gravitationally bound astrophysical objects.

"Numerical cosmology usually involves simulating the large structures in the universe -- the formation of galaxies and clusters of galaxies," Norman said. "But you can use the same numerical and physical approaches to study the very first structures that formed from the Big Bang."

Theorists had proposed a number of likely candidates for the first cosmological objects -- from Jupiter-size "clumpuscules" to brown dwarfs to massive black holes.

"What we found in our simulation, however, were tiny star clusters, each containing about 1,000 to 10,000 solar masses," Norman said. "Although these were low-mass clusters, each star was massive - typically containing 100 solar masses. Because the stars were so massive, they were blown to bits long ago." A star's lifetime is determined by its mass. The greater the mass, the more rapidly a star will consume its nuclear fuel. As a star ages, it produces heavier elements through nuclear fusion. Massive stars typically end their days as supernovae that spew shock waves and heavy elements into space, triggering another generation of star formation.

The first star clusters likely formed between 50- and 100-million years after the Big Bang, Norman said. "But because they disappeared so long ago, we are basically studying a ghost that physics tells us once existed, but which we can't see anymore."

Today, the oldest visible objects are globular star clusters -- densely packed systems containing around one million solar masses. "It is probable that the earliest clusters, through a process of continued star formation, metal enrichment and mergers, eventually aggregated into these globular clusters," Norman said.

The initial conversion of gas into stars was highly inefficient and produced a very small number of stars, Norman said. "Probably less than 1 percent of the gas in these primordial clouds actually cooled and collapsed to sufficiently high densities to form stars, so there was plenty of fuel left over to make more stars. But these early star clusters were the 'spark plugs' that started the whole thing off."

The simulation used by Norman and his colleagues includes relevant dark matter dynamics, chemical and radiative processes, nonlinear hydrodynamics, and nonequilibrium physics to determine the collapse and possible fragmentation of gravitationally and thermally unstable primordial gas clouds. Density perturbations within the gas clouds initially created compact objects called halos, which then condensed into the first stars.

A major technical accomplishment -- called adaptive mesh refinement -- made the high-resolution simulation possible. The technique employs an algorithm that can collapse the resolution from cosmological scales down to the scale of an individual star.

"Our three-dimensional adaptive mesh refinement code utilizes an adaptive hierarchy of resolution grids to achieve an extremely high spatial dynamic range," Norman said. "A smart algorithm places subgrids around regions of high interest, and these subgrids then use even finer grid cells to increase the local resolution. So, we have a numerical grid that can zoom in automatically and adaptively to as fine a level of detail as is required by the solution."

The adaptive mesh refinement code was developed by Greg Bryan at the Massachusetts Institute of Technology. Tom Abel, at the Max Planck Institute for Astrophysics in Garching, Germany, developed the nonequilibrium chemical model of the primordial gas.

Funding for the project came from NASA and the National Science Foundation.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Simulation Reveals Very First Stars That Formed In The Universe." ScienceDaily. ScienceDaily, 25 March 1999. <www.sciencedaily.com/releases/1999/03/990325054316.htm>.
University Of Illinois At Urbana-Champaign. (1999, March 25). Simulation Reveals Very First Stars That Formed In The Universe. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/1999/03/990325054316.htm
University Of Illinois At Urbana-Champaign. "Simulation Reveals Very First Stars That Formed In The Universe." ScienceDaily. www.sciencedaily.com/releases/1999/03/990325054316.htm (accessed July 31, 2014).

Share This




More Space & Time News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Supply Ship Takes Off for International Space Station

Supply Ship Takes Off for International Space Station

AFP (July 30, 2014) The European Space Agency's fifth Automated Transfer Vehicle (ATV-5) is takes off to the International Space Station on an Ariane 5 rocket from French Guiana. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com
Raw: Rocket Launches Into Space With Cargo Ship

Raw: Rocket Launches Into Space With Cargo Ship

AP (July 30, 2014) Arianespace launched a rocket Tuesday from French Guiana carrying a robotic cargo ship to deliver provisions to the International Space Station. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins