Featured Research

from universities, journals, and other organizations

UT Southwestern Researchers Find Way To Control Gene Activity, Opening Way For Cancer Drugs

Date:
May 13, 1999
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
Researchers at UT Southwestern Medical Center at Dallas have developed a method to turn off a gene for telomerase, which activates the continuous division of cancer cells. This finding could aid in the creation of new cancer drugs.

DALLAS - May 12, 1999 - Researchers at UT Southwestern Medical Center at Dallas have developed a method to turn off a gene for telomerase, which activates the continuous division of cancer cells. This finding could aid in the creation of new cancer drugs.

The research team invented a novel method for slipping a small molecule, known as peptide nucleic acid (PNA), into cells, where it then blocked telomerase activity. Telomerase is an enzyme that prevents depletion of the ends -- telomeres -- of chromosomes and allows continuous cell division. The study was reported in the June issue of Chemistry and Biology published today.

Telomeres shorten each time the cell divides, 50 to 70 times during the lifetime of a normal cell. Once the protective tips of DNA are gone, the cells die. All human cells have a gene for telomerase, but it is switched off in normal cells, except embryonic cells, so the enzyme is not manufactured. It is switched on in tumor cells allowing them to divide uncontrollably and be immortal.

The same investigators published a related paper describing the rules for attacking DNA targets with PNAs. That study appeared in March in the Journal of the American Chemical Society.

"A challenge that researchers have faced in trying to switch genes on and off with any efficiency is to identify a small molecule that can enter cells, bind to a target gene and turn the gene off," said Dr. David Corey, co-author of the study, associate professor of pharmacology and biochemistry and a Howard Hughes Medical Institute (HHMI) investigator. "We have a simple way to get PNAs into cells, and we have determined rules guiding their ability to block DNA and RNA targets."

The scientists introduced PNAs into cells by adding a lipid -- a fat-soluble substance. This method allowed delivery of PNAs into the nucleus in almost 100 percent of the tests on two different cell lines, Corey said.

One of the most significant aspects of the work, especially in relation to developing anticancer drugs, is that seven out of 10 of the PNAs tested that targeted different regions of telomerase were able to inhibit the activity of the enzyme. In previous investigations by other scientists trying to use synthetic bits of DNA to block gene activity, only about one in 10 or 20 was similarly successful.

Beyond targeting telomerase, the study's findings also might aid in designing drugs for other diseases and in uncovering the function of the 100,000 genes that make up the human genome.

The Human Genome Project is finding and sequencing all the genes, but now we need to find out what the proteins they produce actually do inside the cells, Corey said. "The efficient way that we have identified to block activity inside cells will allow us to get the multidimensional knowledge necessary to understand cell signaling and regulation.

Now that we know how to get PNAs into cells and the rules governing their binding to DNA and RNA, I can even foresee that these small molecules can make a contribution to development of drugs designed to treat almost any human disease.

Other researchers on the Chemistry and Biology study included: HHMI associate and pharmacology researcher Susan Hamilton; HHMI research technician Carla Simmons; and UT Southwestern Medical Scientist Training Program student Irfan Kathiriya.

The other investigator on the Journal of the American Chemical Society study was Dr. Tsutomu Ishihara, pharmacology postdoctoral fellow and Japanese Society for the Promotion of Science fellow.

Both studies were supported by grants from the National Institutes of Health, the Robert A. Welch Foundation and the Texas Advanced Technology Program.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "UT Southwestern Researchers Find Way To Control Gene Activity, Opening Way For Cancer Drugs." ScienceDaily. ScienceDaily, 13 May 1999. <www.sciencedaily.com/releases/1999/05/990513065704.htm>.
University Of Texas Southwestern Medical Center At Dallas. (1999, May 13). UT Southwestern Researchers Find Way To Control Gene Activity, Opening Way For Cancer Drugs. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/1999/05/990513065704.htm
University Of Texas Southwestern Medical Center At Dallas. "UT Southwestern Researchers Find Way To Control Gene Activity, Opening Way For Cancer Drugs." ScienceDaily. www.sciencedaily.com/releases/1999/05/990513065704.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins