Featured Research

from universities, journals, and other organizations

Gene Triggers Formation Of Sensory Cells In The Ear

Date:
June 14, 1999
Source:
Howard Hughes Medical Institute
Summary:
Using an advanced microscope facility, a researcher at the University of Illinois at Chicago has identified a key step in the development of sensory cells in the inner ear known as hair cells. The discovery could lead to gene therapy treatments for some common types of hearing loss and dizziness.

June 11, 1999—A team of scientists from the Howard Hughes Medical Institute (HHMI) at Baylor College of Medicine has discovered the gene responsible for triggering embryonic cells in the inner ear to develop into sound- and motion-sensing hair cells.

Related Articles


Huda Zoghbi, HHMI investigator at Baylor, said that this finding raises the possibility of introducing the gene into the inner ear to replenish hair cells lost to age and environmental trauma, two prevalent causes of deafness and balance problems.

The Zoghbi lab found that a mouse gene called Math1 signals precursor cells in the inner ear to become hair cells. This decision occurs during embryonic development at a time when other precursor cells are developing into support cells that surround the hair cells and anchor them in place within the inner ear.

The microscopic hairs that sprout from such cells cover inner ear surfaces like wheat in a Kansas field. When sound or head motion creates ripples across the array of hairs, that motion is translated into nerve impulses that the brain interprets as sound or movement.

Zoghbi, whose main research explores disorders of balance, began this collaboration with Hugo Bellen, also an HHMI investigator at Baylor, in 1996 when he brought to her attention a line of uncoordinated fruit flies that lacked a gene called atonal. The scientists knew that genes for such crucial functions are usually "conserved" throughout the animal kingdom—when one species has such genes, other animals species usually do, too. So they embarked on a search for genes similar to atonal in the mouse, in the hopes of gaining insight into peripheral nervous system development in vertebrates.

Zoghbi's group soon isolated a mouse gene, which they named "Mouse atonal homolog1," or Math1, that was similar to the fly gene. The genes are nearly identical in structure, yet the researchers found that the fly and mouse genes operate in different parts of the nervous system. In the fly, the atonal gene is active in peripheral nerves—those found outside of the brain and spinal cord. By contrast, the mouse version functions in many areas of the spinal cord and in the cerebellum, a region of the brain important in controlling motion. Surprisingly, mice with a non-working Math1 gene died immediately after birth, implying a more critical role for the gene in the mouse than in the fruit fly.

To determine why mice with the Math1 mutation died, and to reveal sites of Math1 activity that may have been missed before, the scientists developed other mutant strains of mice in which Math1 was replaced with an indicator gene that would stain blue any cells where the gene was normally active.

"These new mice showed for the first time that this gene was normally expressed in inner ear cells," said Zoghbi. "And once we examined these structures closely, we discovered that the hair cells are lacking in the mutant mice."

But, said Zoghbi, we couldn't rule out that Math1 was merely important for hair cells to continue to grow, and not for their formation.

"So, we went back to the earliest point in embryonic development, when the first hair cells begin to differentiate, and we found absolutely no hair cells," she said. "Certainly, Math1 could be important for maintenance of hair cells, but we now know for sure that it is critical for their genesis."

Zoghbi, Bellen and their colleagues theorize that all such inner ear cells begin as "mother" cells, and in the absence of Math1, all will become support cells. Once Math1 triggers a cell to become a hair cell, it also inhibits the cells around it, forcing them to become support cells.

In their next experiments, the scientists plan to explore whether Math1 can somehow be introduced into mature inner ear cells—perhaps using a harmless virus—to regrow hair cells lost to disease or aging.

"The art is to deliver the gene to the proper cell at the proper time and at the right concentration," said Bellen. "Obviously, the process is fraught with problems. For instance, we don't know if neurons will reconnect with hair cells once they are restored.

"My gut feeling from published experiments is that you can turn inner ear cells into hair cells," he said. Bellen cited, as an example, studies that reveal that chickens can regrow functioning hair cells once they are removed.

More broadly, the scientists will explore how Math1 controls development throughout the nervous system, attempting to understand why mice lacking the gene die immediately after birth.


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Gene Triggers Formation Of Sensory Cells In The Ear." ScienceDaily. ScienceDaily, 14 June 1999. <www.sciencedaily.com/releases/1999/06/990614075931.htm>.
Howard Hughes Medical Institute. (1999, June 14). Gene Triggers Formation Of Sensory Cells In The Ear. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/1999/06/990614075931.htm
Howard Hughes Medical Institute. "Gene Triggers Formation Of Sensory Cells In The Ear." ScienceDaily. www.sciencedaily.com/releases/1999/06/990614075931.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins