Featured Research

from universities, journals, and other organizations

Formic Acid Found Toward Hot Galactic Molecular Cores

Date:
July 8, 1999
Source:
University Of Illinois At Urbana-Champaign
Summary:
In their continuing quest for large interstellar molecules, radio astronomers at the University of Illinois have located dense clumps of formic acid -- the simplest organic acid -- inside the hot star-forming cores in three interstellar molecular clouds.

CHAMPAIGN, Ill. - In their continuing quest for large interstellar molecules, radio astronomers at the University of Illinois have located dense clumps of formic acid -- the simplest organic acid -- inside the hot star-forming cores in three interstellar molecular clouds.

"On Earth, formic acid is the colorless, pungent liquid found in ant bites, bee stings and nettle bristles," said Lewis E. Snyder, a U. of I. professor of astronomy. "In space, formic acid is of great interest because it shares similar structural elements with the common interstellar molecule methyl formate and the biologically important molecules acetic acid and glycine."

Acetic acid was discovered in space in 1996 by a team of researchers led by U. of I. research scientist David Mehringer and Snyder. Glycine has not yet been confirmed in interstellar space.

Glycine is the simplest biologically important amino acid. "All that is needed to form glycine is to combine acetic acid and ammonia, which was discovered in space in 1969," Snyder said. "So it is plausible that simple amino acids do form in space."

Amino acids are the building blocks of proteins and DNA. Because of the connection between formic acid and glycine, detections of formic acid sources "will provide important constraints on future searches for glycine sources," Snyder said. "We can use formic acid as a Rosetta stone to help identify regions in space where more complex, biologically important molecules might be located."

In interstellar space, formic acid was first identified in 1970 and subsequently studied with single-element telescopes. For the recent measurements, however, graduate student Sheng-Yuan Liu, Mehringer and Snyder used the 10 telescopes of the Berkeley-Illinois-Maryland Association (BIMA) millimeter array near Hat Creek, Calif.

"Interferometric observations of this kind provide the sharpest possible pictures of these regions, revealing the spatial location and distribution of emission from the molecule," said Liu, who presented his team's findings at a meeting in Chicago of the American Astronomical Society on June 3. "We have detected formic acid toward the hot cores in three molecular clouds: Sagittarius B2, Orion and W51."

Hot cores are high-temperature, high-density compact regions in molecular clouds where stars and possibly planetary systems are forming. "These are regions where complex molecules are often found, so they provide a test bed for probing interstellar dust grain chemistry," Liu said.

Interstellar dust grains -- the seeds for the formation of planetary systems -- are thought to have played a crucial role in synthesizing complex molecular species like formic acid, acetic acid and glycine on the early Earth to help start prebiotic organic chemistry.

The formic acid observations were supported by the Laboratory for Astronomical Imaging in the U. of I. astronomy department and the National Science Foundation.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Formic Acid Found Toward Hot Galactic Molecular Cores." ScienceDaily. ScienceDaily, 8 July 1999. <www.sciencedaily.com/releases/1999/07/990708080344.htm>.
University Of Illinois At Urbana-Champaign. (1999, July 8). Formic Acid Found Toward Hot Galactic Molecular Cores. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/1999/07/990708080344.htm
University Of Illinois At Urbana-Champaign. "Formic Acid Found Toward Hot Galactic Molecular Cores." ScienceDaily. www.sciencedaily.com/releases/1999/07/990708080344.htm (accessed October 2, 2014).

Share This



More Space & Time News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Astronomers Spot Largest, Brightest Solar Flare Ever

Astronomers Spot Largest, Brightest Solar Flare Ever

Newsy (Oct. 1, 2014) — The initial blast from the record-setting explosion would have appeared more than 10,000 times more powerful than any flare ever recorded. Video provided by Newsy
Powered by NewsLook.com
French Apple Fans Discover the Apple Watch

French Apple Fans Discover the Apple Watch

AFP (Sep. 30, 2014) — Apple fans in France discover the latest toy, the Apple Watch. The watch comes in two sizes and an array of interchangeable, fashionable wrist straps. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
The Water You Drink Might Be Older Than The Sun

The Water You Drink Might Be Older Than The Sun

Newsy (Sep. 27, 2014) — Researchers at the University of Michigan simulated the birth of planets and our sun to determine whether water in the solar system predates the sun. Video provided by Newsy
Powered by NewsLook.com
First Woman Cosmonaut in 17 Years Blasts Off for ISS

First Woman Cosmonaut in 17 Years Blasts Off for ISS

AFP (Sep. 26, 2014) — A Russian Soyuz spacecraft carrying an American astronaut and two Russian cosmonauts, including the first woman cosmonaut in 17 years, blasted off on schedule Friday. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins