Featured Research

from universities, journals, and other organizations

Apollo 11 Experiment Continues To Return Valuable Data

Date:
July 20, 1999
Source:
NASA/Jet Propulsion Laboratory
Summary:
An experiment left on the lunar surface 30 years ago by the Apollo 11 astronauts continues to return valuable data about the Earth-Moon system to scientific centers around the world, including NASA's Jet Propulsion Laboratory, Pasadena, Calif. Scientists who analyze the data from the Lunar Laser Ranging Experiment have measured, among other things, that the Moon is moving away from the Earth and that the shape of the Earth is changing at an unprecedented accuracy level.

An experiment left on the lunar surface 30 years ago by the Apollo 11 astronauts continues to return valuable data about the Earth-Moon system to scientific centers around the world, including NASA's Jet Propulsion Laboratory, Pasadena, Calif.

Scientists who analyze the data from the Lunar Laser Ranging Experiment have measured, among other things, that the Moon is moving away from the Earth and that the shape of the Earth is changing at an unprecedented accuracy level. They have also used the experiment to test the validity of several predictions of Einstein's Theory of Relativity.

The lunar laser ranging reflector is designed to reflect pulses of laser light fired from the Earth. The idea was to determine the round-trip travel time of a laser pulse from the Earth to the Moon and back again, thereby calculating the distance between the two. Unlike the other scientific experiments left on the Moon, this reflector requires no power and is still functioning perfectly after 30 years.

The reflector consists of a checkerboard mosaic of 100 fused silica half cubes (roughly the size of the average computer monitor screen), called corner cubes, mounted in a 46-centimeter (18-inch) square aluminum panel. Each corner cube is 3.8 centimeters (1.5 inches) in diameter. Corner cubes reflect a beam of light directly back toward the point of origin; it is this fact that makes them so useful in Earth surveying.

"The Lunar Laser Ranging project cuts across disciplinary and international boundaries, measuring characteristics of the Earth, the Moon and gravitational physics," said Dr. James Williams, a research scientist at JPL. "Data analysis has been conducted around the world, including Germany, France and the U.S."

The McDonald Observatory Laser Ranging Station near Ft. Davis, Texas, and the Observatoire de la Cote d'Azur, operated by the Centre d'Etudes et de Recerche en Geodynamique et Astronomie near Grasse, France, regularly send a laser beam through an optical telescope and try to hit one of the reflectors. The reflectors are too small to be seen from Earth, so even when the beam is correctly aligned in the telescope, actually hitting a lunar reflector is quite challenging. At the Moon's surface the beam is roughly one mile wide; scientists liken the task of properly aiming the beam to using a rifle to hit a moving dime two miles away.

Once the laser beam hits a reflector, scientists at the observatories use sensitive filtering and amplification equipment to detect any kind of return signal. The reflected light is too weak to be seen with the human eye, but, under good conditions, one photon -- the fundamental particle of light -- will be received every few seconds.

Three more reflectors have since been left on the Moon, including two by later Apollo missions and one (built by the French) by the unmanned Soviet Lunakhod 2 lander. Each of the reflectors rests on the lunar surface in such a way that its flat face points toward the Earth.

Continuing improvements in lasers and electronics over the years have lead to recent measurements that are accurate to about two centimeters (less than one inch). Scientists know the average distance between the centers of the Earth and the Moon is 385,000 kilometers (239,000 miles), implying that the modern lunar ranges have relative accuracies of better than one part in 10 billion. This level of accuracy represents one of the most precise distance measurements ever made and is equivalent to determining the distance between Los Angeles and New York to one-hundredth of an inch.

During the course of the last 30 years, scientists have been able to use the orbit of the Moon and the data they received through lunar ranging to study events happening on Earth.

There have been major scientific advances derived from lunar ranging:

- The familiar ocean tides raised on the Earth by the Moon have a direct influence on the Moon's orbit. Laser ranging has shown that the Moon is receding from the Earth at about 3.8 centimeters (1.5 inches) every year. - Lunar ranging, together with laser ranging to artificial Earth satellites, has revealed a small but constant change in the shape of the Earth. The land masses are gradually changing after being compressed by the great weight of the glaciers in the last Ice Age. - Predictions of Einstein's theory of relativity have been confirmed using laser ranging. - Small-scale variations in the Moon's rotation have been measured. They result from irregularities in the lunar gravity field, from changes in the Moon's shape due to tides raised in the Moon's solid body by the Earth and from the effects of a fluid lunar core. - The combined mass of the Earth and Moon has been determined to one part in 200 million. - Lunar ranging has yielded an enormous improvement in our knowledge of the Moon's orbit, enough to permit accurate analyses of solar eclipses as far back as 1400 BC. - The atmosphere, tides and the core of the Earth cause changes in the length of an Earth day -- the variations are about one thousandth of a second over the course of a year.

Researchers say that lunar reflectors will remain in service for years to come, because of the usefulness of continued improvements in range determinations for further advancing our understanding of the Earth-Moon system and the need for monitoring the details of the Earth's rotation.

At JPL, this lunar ranging analysis, sponsored by NASA's Office of Space Science, is conducted by Drs. James G. Williams, Dale Boggs, J. Todd Ratcliff and Jean O. Dickey. JPL is a division of the California Institute of Technology, Pasadena, CA.


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "Apollo 11 Experiment Continues To Return Valuable Data." ScienceDaily. ScienceDaily, 20 July 1999. <www.sciencedaily.com/releases/1999/07/990720083540.htm>.
NASA/Jet Propulsion Laboratory. (1999, July 20). Apollo 11 Experiment Continues To Return Valuable Data. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/1999/07/990720083540.htm
NASA/Jet Propulsion Laboratory. "Apollo 11 Experiment Continues To Return Valuable Data." ScienceDaily. www.sciencedaily.com/releases/1999/07/990720083540.htm (accessed September 2, 2014).

Share This




More Space & Time News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: NASA Captures Solar Flare

Raw: NASA Captures Solar Flare

AP (Sep. 1, 2014) NASA reported the sun emitted a mid-level solar flare, on August 24th. NASA's Solar Dynamics Observatory captured the images of the flare, which erupted on the left side of the sun. (Sept. 1) Video provided by AP
Powered by NewsLook.com
Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins