Featured Research

from universities, journals, and other organizations

An Entire Library On One Compact Disc? Temple Physicist Is Studying Solids To Make It So

Date:
August 12, 1999
Source:
Temple University
Summary:
CD's and DVD's are amazing technology, but Temple University physicist Zameer Hasan doesn't think it goes far enough. He believes there is a way to fit much, much more material on a disc, and is shooting around lasers of his own, vaporizing solids, and studying the optical properties of solids to find a way to do so.

When you listen to music on your CD changer, or watch a movie on your DVD player, or run software on your PC's CD-ROM drive, this is what happens: A laser--a narrow beam of light--reads the surface of the disc, which has been encoded either to reflect the light back or to let it pass through. The resulting snippet of digital information, represented by a "0" or a "1," constitutes a fraction of a musical note, a blink of a car chase, a flash of an outfielder hauling in a long fly ball.

String enough of those tiny bits together, and you have an entire album, a whole movie, or a cool video baseball game.

It's amazing technology, but Temple University physicist Zameer Hasan doesn't think it goes far enough. He believes there is a way to fit much, much more material on a disc, and is shooting around lasers of his own, vaporizing solids, and studying the optical properties of solids to find a way to do so.

Hasan's field of research is known as solid-state optical physics, or optoelectronics. It offers mind-boggling possibilities for storing and retrieving data.

Hasan, a professor of physics, is using already existing technology that allows a laser beam to be split into an almost infinite variety of colors--billions of different shades of red, for example. The much trickier part of his work is to create a material capable of distinguishing one color from all the others. Coding for a specific shade--rather than simply determining whether the laser passes through or is reflected back--would allow much more information to be placed on a disc, increasing capacity by up to a billion times, according to Hasan.

"Aside from the excellent applications, it's beautiful physics, to study atoms inside a solid," Hasan notes. "It's not research in technology alone. It's research in the most fundamental physics. When we understand the physics, we'll understand the limitations of present materials, and be a step closer to overcoming those limitations."

In an upstairs laboratory in Temple's Barton Hall, home to the physics department, Hasan and his team prepare rare-earth materials, vaporizing them into thin, solid films that they are testing as storage materials. The experiments are carried out in a downstairs lab, where several machines shoot lasers, in brilliant greens and reds, back and forth on the materials to store and retrieve information.

Current technology permits CD surfaces to carry roughly one bit of information per square micron (one-millionth of a meter). Working under a $2 million grant from the U.S. Air Force Office of Scientific Research, Hasan is trying to expand that to 1,000--and one day, he hopes, one million--bits per micron. The result would be a staggering increase in storage capacity: A laser now reading an individual letter, for example, would instead be capable of picking up whole words.

Scientists studying this issue have identified four obstacles to making it work: permanence of the coding, high density of storage, speed of the laser's reading, and the temperature at which such memories can survive. Hasan says that his Temple group has conquered the first three, but are still trying to get the temperature right.

When they began, storage density was one-thousandth of what they have been able to achieve. The speed of storing information was less than one-millionth the present speed. And the highest temperature at which such dense memory could survive was around 2 degrees Kelvin--just above absolute zero, the point at which almost everything stops moving, except for quantum oscillations. Since then, they have managed to raise the survivability temperature to 25 degrees Kelvin, but more work is required. The issue is critical because the higher the temperature of operation, the less space and care it takes to safeguard the memory.

"We've been able to do it better than anyone so far, but it's still not good enough," Hasan explains. "It still needs to be about three times better--at least the temperature where air liquifies."

The team's short-term goal is to identify and produce materials that are more easily readable and offer compact memories. Such materials will be readily usable by the technology community. In the long run, they hope to overcome the temperature hurdle. This would "most certainly" revolutionize technology, Hasan states.

"It is the most difficult frontier to conquer; we know very little about the response of electrons in a solid to high temperature," he notes. "In scientific terms, this is known as electron-vibration coupling. But many people never thought that high-temperature super-conductivity would be possible either, and it is fairly common today. In a similar way, we are hopeful of our efforts, and are starting to make strides."


Story Source:

The above story is based on materials provided by Temple University. Note: Materials may be edited for content and length.


Cite This Page:

Temple University. "An Entire Library On One Compact Disc? Temple Physicist Is Studying Solids To Make It So." ScienceDaily. ScienceDaily, 12 August 1999. <www.sciencedaily.com/releases/1999/08/990812080706.htm>.
Temple University. (1999, August 12). An Entire Library On One Compact Disc? Temple Physicist Is Studying Solids To Make It So. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/1999/08/990812080706.htm
Temple University. "An Entire Library On One Compact Disc? Temple Physicist Is Studying Solids To Make It So." ScienceDaily. www.sciencedaily.com/releases/1999/08/990812080706.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins