Featured Research

from universities, journals, and other organizations

New Math Method Adds To Likelihood Of Super-Reliable Metal Parts

Date:
August 17, 1999
Source:
Purdue University
Summary:
It may soon be possible to manufacture ultrahard metal parts such as bearings, gears and jet engine components that are so reliable and long-lasting they never have to be replaced. A technology called "superfinish hard machining" promises to make such a feat possible, while saving time and money and reducing pollution.

WEST LAFAYETTE, Ind. -- It may soon be possible to manufacture ultrahard metal parts such as bearings, gears and jet engine components that are so reliable and long-lasting they never have to be replaced.

A technology called "superfinish hard machining" promises to make such a feat possible, while saving time and money and reducing pollution. Now, researchers at Purdue University have developed a mathematical method that may speed the emergence of hard machining. Details about the work will be released Tuesday (8/24) at a scientific conference in Switzerland.

Presently, parts that carry critical loads in everything from cars and appliances to jet engines are produced in many steps, including time-consuming and costly grinding and polishing operations. The parts are first machined out of metal that is relatively soft. Then, they are hardened by being subjected to high heat and quickly cooled in water, or "quenched." After those steps, they still require precision finishing processes to make their surfaces ultrasmooth to reduce friction and wear.

In superfinish hard machining, the metal is hardened first and then machined in a single-step process that yields smoother surfaces, reduces waste and eliminates the need for polluting oils now essential for cutting and grinding, says C. Richard Liu, a Purdue professor of industrial engineering who has been a pioneer in hard machining research.

Purdue is helping industry pursue ways to perfect hard machining and reap its potentially dramatic benefits. For example, it might be used one day to increase the service life of hardened metal parts by 20 to 50 times. Essentially, parts such as bearings and jet engine components that might ordinarily require replacement several times during the lifetime of a piece of equipment would never have to be replaced, Liu says.

One obstacle to the widespread use of hard machining is that, as the cutting tools that are used to machine hardened steel begin to wear, they cause thermal damage that weakens the metal being machined. The tools, which come in a variety of shapes, are small, sharpened bits like those used on a lathe to machine metal. Before superfinish hard-machining can be perfected, engineers need better methods to analyze precisely how heat is conducted between the cutting tool and the metal surface. They also need to take into account how much heat is released as it is carried away by metal shavings, or chips, removed from the metal during machining.

"It's a very complex heat-transfer system," Liu says.

To attack that problem, he has developed a new mathematical method to predict the precise temperature distribution at the interface of the cutting tool and the metal surface. A major benefit of the new model is that it can be used to predict which specific cutting tools will cause the least heat damage. Liu will present a paper detailing the work on Aug. 24, during the annual meeting in Switzerland of the International Institution for Production Engineering Research.

Purdue researchers have used the method to enhance a patented process for machining hardened components, which up until now have been extremely difficult to machine without causing thermal damage. During the process, the metal's surface is "prestressed," which means it is formed to counteract the stresses it will encounter in everyday use.

The research is funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "New Math Method Adds To Likelihood Of Super-Reliable Metal Parts." ScienceDaily. ScienceDaily, 17 August 1999. <www.sciencedaily.com/releases/1999/08/990817064702.htm>.
Purdue University. (1999, August 17). New Math Method Adds To Likelihood Of Super-Reliable Metal Parts. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/1999/08/990817064702.htm
Purdue University. "New Math Method Adds To Likelihood Of Super-Reliable Metal Parts." ScienceDaily. www.sciencedaily.com/releases/1999/08/990817064702.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins