Featured Research

from universities, journals, and other organizations

MIT Researchers Explore Physics, Geometry Of Crumpling

Date:
September 7, 1999
Source:
Massachusetts Institute Of Technology
Summary:
What do mountains, wrinkled slacks, and a crushed soda can have in common? All have been crumpled. In the September 2 issue of Nature, MIT researchers and colleagues describe the geometry and physics behind the basic building block of a crumpled object: a cone-like deformation that reminds one of a coffee filter.

CAMBRIDGE, Mass. -- What do mountains, wrinkled slacks, and a crushed soda can have in common? All have been crumpled.

In the September 2 issue of Nature, MIT researchers and colleagues describe the geometry and physics behind the basic building block of a crumpled object: a cone-like deformation that reminds one of a coffee filter.

"We have described the 'hydrogen atom' of crumpling," said Lakshminarayanan Mahadevan, Karl Van Tassel Career Development Associate Professor in the Department of Mechanical Engineering. Much as chemists' understanding of the hydrogen atom aids their work in studying more complicated molecules, the new work will aid scientists' understanding of crumpling phenomena on scales ranging from the formation of mountains to the crinkled red blood cells that characterize one disease.

"We can never fully understand such phenomena, which are ubiquitous, without understanding the basic elements involved," Professor Mahadevan said.

Mountains, wrinkled pants, and other crumpled materials all begin as a thin sheet, be it the Earth's crust or a smooth swatch of fabric. When that sheet is packed into a smaller volume--as happens, for example, when you crush a piece of paper into a ball--it crumples. And the basic element of a crumpled object is the cone-like structure.

"When there are many of these structures, they interact with each other and are responsible for the ridges and peaks that one observes in a crumpled sheet," Professor Mahadevan said.

"One only has to look as far as one's shirt sleeve or trouser knee to realize this, a fact that is beautifully illustrated in the chiarascuros of Leonardo da Vinci and Albrecht Durer showing the complex draping patterns of textiles." (da Vinci is referenced in the Nature paper.)

In the current work, the researchers explain the geometry of the cone-like structure, its response to mechanical forces, and its stability. Next, they do the same for a more complicated problem: two such structures connected by a ridge.

The result, said Professor Mahadevan, "is a unifying concept in the sense that if you ever have a thin sheet of any material being subject to compressive forces, it will always respond by eventually forming these shapes and ridges in the way we describe."

The analysis that defined these shapes and ridges also led to other insights. For example, the researchers found that in the initial stages of crumpling everything is dominated by bending (rather than stretching).

In their paper the researchers also suggest that further studies of crumpling could take advantage of the pops, snaps, and other acoustic emissions associated with the loss of stability of the ridges and peaks. Such sounds differ in intensity depending on the stage of crumpling, "so by listening to them we may be able to explore how the crumpling is actually proceeding," Professor Mahadevan said.

How did he come to work on this general problem? "I have a deep interest in geometry and how it relates to the everyday world," Professor Mahadevan said. Last year he and colleagues published another paper in Nature that described the buckling behavior of thin filaments. An everyday example: A coiling stream of honey.

"These seemingly mundane everyday problems are often anything but! Yet their very ubiquity challenges us to explain them," Professor Mahadevan concluded.

Coauthors of the Nature paper are Professors Enrique Cerda and Francisco Melo of the Universidad de Santiago de Chile and Sahraoui Chaieb, a postdoctoral associate in MIT's Department of Mechanical Engineering.

The work was supported by Professor Mahadevan's Karl van Tassel Career Development Chair, a Chilean Presidente de la Repϊblica Postdoctoral Fellowship, a postdoctoral fellowship from the Universidad de Santiago de Chile, and the Chilean Cαtedra Presidencial en Ciencias.


Story Source:

The above story is based on materials provided by Massachusetts Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute Of Technology. "MIT Researchers Explore Physics, Geometry Of Crumpling." ScienceDaily. ScienceDaily, 7 September 1999. <www.sciencedaily.com/releases/1999/09/990907072446.htm>.
Massachusetts Institute Of Technology. (1999, September 7). MIT Researchers Explore Physics, Geometry Of Crumpling. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/1999/09/990907072446.htm
Massachusetts Institute Of Technology. "MIT Researchers Explore Physics, Geometry Of Crumpling." ScienceDaily. www.sciencedaily.com/releases/1999/09/990907072446.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) — A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) — The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com
Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) — A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Inside London's Massive Sewer Tunnel Project

Inside London's Massive Sewer Tunnel Project

AP (Sep. 22, 2014) — Billions of dollars are being spent on a massive super sewer to take away London's vast output of waste, which is endangering the River Thames. (Sept. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins