Featured Research

from universities, journals, and other organizations

New Type Of Proto-Planetary Nebula Hints At Stellar Superwind

Date:
September 9, 1999
Source:
University Of Illinois At Urbana-Champaign
Summary:
The discovery of a new type of low-surface-brightness reflection nebula around aging stars has provided important clues about how stars lose mass and form planetary nebulae.

The discovery of a new type of low-surface-brightness reflection nebula around aging stars has provided important clues about how stars lose mass and form planetary nebulae. "The results from a recently completed optical imaging survey of proto-planetary nebula candidates has shown us that stars don't lose mass in a spherically symmetric way at the ends of their lives," said Margaret Meixner, a professor of astronomy at the University of Illinois. "Some other process of mass loss, such as an axisymmetric superwind, is occurring."

As certain types of stars age, their stellar winds create glowing envelopes of gas and dust called planetary nebulae. Intermediate-mass stars, like the sun, move through a transitional proto-planetary nebula stage on their way to becoming planetary nebulae. "One of the most significant changes that occurs during the transition is the emergence of axisymmetry in the circumstellar shell of gas and dust," Meixner said. "While most stars show a high degree of spherical symmetry, most planetary nebulae display either bipolar or elliptical symmetry. Therefore, the departure from spherical symmetry must take place somewhere along the evolutionary sequence between the two phases."

To investigate potential morphological trends during the transition, Meixner and colleagues Toshiya Ueta (a U. of I. graduate student) and Matthew Bobrowsky (a research scientist at Orbital Sciences Corp.) studied 27 candidate proto-planetary nebulae with the Hubble Space Telescope. "The Hubble's high-resolution imaging capabilities allowed us to identify low-surface-brightness reflection nebulosities around 21 of the candidate objects," Meixner said. "All 21 nebulae showed varying degrees of asphericity, and we clearly recognized two basic types of structure."

In the first type of structure, never before observed in proto-planetary nebulae, a bright, central star is embedded in a faint, elliptically elongated shell of gas and dust. In the second type, the central star is partially or completely obscured by a bipolar structure. "The fact that we see elliptical structures in addition to bipolar structures helps to constrain the time scale of when the shaping process occurred," Meixner said. "The intrinsic axisymmetry of these reflection nebulosities demonstrates that the axisymmetry frequently found in planetary nebulae predates the proto-planetary nebula phase."

Meixner and her colleagues suggest that the axisymmetry found in proto-planetary nebulae could be created by an equatorially enhanced stellar superwind. The onset of the superwind would initiate the morphological shift from spherical to axial symmetry, becoming more pronounced in planetary nebula.

Meixner presented her team's findings at a special conference on asymmetrical planetary nebulae, held Aug. 3-6 at the Massachusetts Institute of Technology.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "New Type Of Proto-Planetary Nebula Hints At Stellar Superwind." ScienceDaily. ScienceDaily, 9 September 1999. <www.sciencedaily.com/releases/1999/09/990909080653.htm>.
University Of Illinois At Urbana-Champaign. (1999, September 9). New Type Of Proto-Planetary Nebula Hints At Stellar Superwind. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/1999/09/990909080653.htm
University Of Illinois At Urbana-Champaign. "New Type Of Proto-Planetary Nebula Hints At Stellar Superwind." ScienceDaily. www.sciencedaily.com/releases/1999/09/990909080653.htm (accessed September 18, 2014).

Share This



More Space & Time News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boeing, SpaceX to Send Astronauts to Space Station

Boeing, SpaceX to Send Astronauts to Space Station

AFP (Sep. 17, 2014) — NASA selected Boeing and SpaceX on Tuesday to build America's next spacecraft to carry astronauts to the International Space Station (ISS) by 2017, opening the way to a new chapter in human spaceflight. Duration: 01:13 Video provided by AFP
Powered by NewsLook.com
East Coast Treated To Rare Meteor Sighting

East Coast Treated To Rare Meteor Sighting

Newsy (Sep. 16, 2014) — Numerous residents along the East Coast reported seeing a bright meteor flash through the sky Sunday night. Video provided by Newsy
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
NASA Picks Boeing and SpaceX to Ferry Astronauts

NASA Picks Boeing and SpaceX to Ferry Astronauts

AP (Sep. 16, 2014) — NASA is a giant step closer to launching Americans again from U.S. soil. It has announced it has picked Boeing and SpaceX to transport astronauts to the International Space Station in the next few years. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins