Featured Research

from universities, journals, and other organizations

Magnetic Fields Crucial To Star Formation, Astronomer Says

Date:
September 10, 1999
Source:
University Of Illinois At Urbana-Champaign
Summary:
Observations by a University of Illinois astronomer have shown that magnetic fields are a critical component controlling when and how stars form.

Observations by a University of Illinois astronomer have shown that magnetic fields are a critical component controlling when and how stars form.

Related Articles


"Understanding the physics governing the structure and evolution of dense interstellar clouds is a necessary part of understanding the fundamental astrophysical process of star formation," said Richard Crutcher, a professor of astronomy at the U. of I. "Theoretical studies have suggested that magnetic fields play a vital role in the evolution of interstellar clouds and in the formation of stars, but those studies needed to be compared with observational data."

Two basic problems have persisted in our understanding of star formation, Crutcher said. First, in a fully formed star, the outward pressure of thermonuclear reactions in the core will balance the inward pull of gravity. In a molecular cloud, however, some other force must be supporting the cloud against its own gravity. Otherwise, all the clouds would have collapsed into stars long ago.

The second problem involves transferring excess angular momentum from a developing star. As a molecular cloud coalesces into stars, the material rotates faster and faster--like a spinning ice skater who tucks in her arms. Unless the excess angular momentum is removed, the star will fly apart.

"Theorists have performed extensive simulations that show how an interstellar cloud might collapse in the presence of a magnetic field," Crutcher said. "In those studies, the researchers could prevent the clouds from quickly collapsing and forming stars, and they could get rid of the extra angular momentum, by making the magnetic fields sufficiently strong."

To test theory against data, Crutcher measured the strengths of magnetic fields in 27 interstellar clouds of varying molecular density. By comparing each cloud's magnetic energy with its gravitational energy, he found that magnetic fields were strong enough to control the rate of collapse and to assist in the star-formation process by providing a means of shedding excess angular momentum.

"The magnetic field strength-- which does indeed scale with the square root of the gas density as theory predicts-- is nearly large enough to keep the cloud from collapsing," Crutcher said. "The gravitational energy is still about twice as strong as the static magnetic energy, but the magnetic field also supports the cloud indirectly by allowing magnetic turbulence and waves to be present."

The turbulence and waves supply an additional force that opposes the pull of gravity and provide a mechanism for transferring angular momentum from the developing star into the surrounding envelope of gas and dust.

"By flinging a small amount of matter outward along the magnetic field lines, the magnetic waves can remove a huge amount of angular momentum, making star formation possible," said Crutcher, who reported his findings in the August issue of the Astrophysical Journal.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Magnetic Fields Crucial To Star Formation, Astronomer Says." ScienceDaily. ScienceDaily, 10 September 1999. <www.sciencedaily.com/releases/1999/09/990910080925.htm>.
University Of Illinois At Urbana-Champaign. (1999, September 10). Magnetic Fields Crucial To Star Formation, Astronomer Says. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/1999/09/990910080925.htm
University Of Illinois At Urbana-Champaign. "Magnetic Fields Crucial To Star Formation, Astronomer Says." ScienceDaily. www.sciencedaily.com/releases/1999/09/990910080925.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Space & Time News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Crew Blasts Off for Int'l Space Station

Raw: Crew Blasts Off for Int'l Space Station

AP (Nov. 23, 2014) A Russian capsule carrying three astronauts from Russia, the United States and Italy has blasted off for the International Space Station. (Nov. 23) Video provided by AP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Crowdfunded Moon Mission Offers To Store Your Digital Memory

Crowdfunded Moon Mission Offers To Store Your Digital Memory

Newsy (Nov. 19, 2014) Lunar Mission One is offering to send your digital memory (or even your DNA) to the moon to be stored for a billion years. Video provided by Newsy
Powered by NewsLook.com
Accidents Ignite Debate on US Commercial Space Travel

Accidents Ignite Debate on US Commercial Space Travel

AFP (Nov. 19, 2014) Serious accidents with two US commercial spacecraft within a week of each-other in October have re-ignited the debate over the place of private corporations in the exploration of space. Duration: 02:08 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins