Featured Research

from universities, journals, and other organizations

New Microscopy Method Reveals Molecular Map Of Biological Surfaces

Date:
September 14, 1999
Source:
Arizona State University, College Of Liberal Arts And Sciences
Summary:
Using modern microscopy tools, scientists have been able to look at the molecules and molecular structures on viruses, cell walls and other biological surfaces, but they haven't had any way of knowing what those molecules actually are. Molecular microscopy techniques have been "chemically blind"- until now.

Using modern microscopy tools, scientists have been able to look at the molecules and molecular structures on viruses, cell walls and other biological surfaces, but they haven't had any way of knowing what those molecules actually are. Molecular microscopy techniques have been "chemically blind"- until now.

In the September 1999 issue of Nature Biotechnology, a team of biophysicists introduce a new method in atomic force microscopy (AFM) that gives the instrument the capability of mapping not just the topographic features of biological molecules, but the specifics of their biochemistry as well. The technique can potentially be used for nanometer-scale mapping of biomolecules and for locating specific molecular receptor sites during biological processes, opening the door to a wide variety of biotechnology applications.

The authors - Anneliese Raab, Dirk Badt, Hansgeorg Schindler and Peter Hinterdorfer from the Institute for Biophysics at the University of Lintz, Austria; Wenhai Han from Molecular Imaging Corporation, Phoenix, Arizona; Sandra J. Smith-Gill from the Frederick Cancer Research and Development Center of the National Cancer Institute; and Stuart M. Lindsay of the Department of Physics and Astronomy at Arizona State University - describe the successful testing of a technique that adds data about the location of specific proteins to the detailed surface images created by an atomic force microscope. In the experiment, the team used AFM to determine the location to within a few nanometers of resolution of lysozyme molecules on a surface.

The technique attaches antibodies keyed to individual proteins to the tip of microscope's sensitive probe. When an antibody reacts with the protein it is specifically targeted to, it creates a variance in the microscope's reading when compared to a reading using a bare tip, thus showing the presence of the protein in the region being scanned. To help insure that the antibody-tipped probe is truly sensitive, a strand of polymer connects the antibody to the tip, providing a "tether" that allows the antibody wiggle and shift into position to better connect with the protein receptors. A magnetically excited cantilever makes the tip oscillate up and down to make the antibody disconnect and reconnect and keep the probe moving.

"What this means is that we can now determine the precise physical locations of specific proteins," said Lindsay. "All you have to have is the right antibody and you can find all the places its antigen is. The more antibodies you scan with, the more detailed the map will be.

"It's exciting because we've been able to see these molecules for a while, and now we'll be able to tell exactly what they are."

Lindsay points out that the technique is likely to have extensive applications in biotechnology. "If you know where the various proteins are in relation to each other, say on the surface of a virus, you can use that information to both locate specific receptor sites and to affect them through their adjacent molecules," Lindsay said.

The research was supported by grants from the Austrian Science Foundation, the Austrian Ministry of Science, the National Institutes of Health and the National Science Foundation.


Story Source:

The above story is based on materials provided by Arizona State University, College Of Liberal Arts And Sciences. Note: Materials may be edited for content and length.


Cite This Page:

Arizona State University, College Of Liberal Arts And Sciences. "New Microscopy Method Reveals Molecular Map Of Biological Surfaces." ScienceDaily. ScienceDaily, 14 September 1999. <www.sciencedaily.com/releases/1999/09/990914082615.htm>.
Arizona State University, College Of Liberal Arts And Sciences. (1999, September 14). New Microscopy Method Reveals Molecular Map Of Biological Surfaces. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/1999/09/990914082615.htm
Arizona State University, College Of Liberal Arts And Sciences. "New Microscopy Method Reveals Molecular Map Of Biological Surfaces." ScienceDaily. www.sciencedaily.com/releases/1999/09/990914082615.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins