Featured Research

from universities, journals, and other organizations

Study Of Fruit Flies May Yield New Clues To Colon Cancer Development

Date:
September 22, 1999
Source:
University Of North Carolina School Of Medicine
Summary:
A study of fruit flies by scientists at the University of North Carolina at Chapel Hill may yield new clues to human colon cancer development.

CHAPEL HILL - A study of fruit flies by scientists at the University of North Carolina at Chapel Hill may yield new clues to human colon cancer development.

A report of the study, the cover story for the September 20 issue of the Journal of Cell Biology, focuses on the tumor suppressor protein adenomatous polyposis coli, or APC. Originally identified in people with familial colon cancer, APC mutations are found in a majority of colon tumors.

According to senior study author Dr. Mark Peifer, UNC-CH associate professor of biology and a member of UNC Lineberger Comprehensive Cancer Center, APC plays an important role within cells to help destroy another protein, beta catenin. His research confirms that in fruit flies (Drosophila), it functions against a very similar protein, Armadillo.

"Beta catenin transmits signals from the cell surface to the nucleus," Peifer explains. "Normally, beta catenin levels in colon cells are very low because it gets rapidly destroyed."

Studies have found that mutations to APC disrupt the beta catenin destruction signaling machinery. Genes along the pathway are fixed permanently to "ON" and beta catenin cellular levels rise. In the cell nucleus this triggers a molecular chain of events that in mammals leads to cell proliferation and tumor formation.

"During normal development, cells are talking to one another, sending signals to a neighbor for a short period of time, at the right time and at the right place. Occasionally, a mutation can switch the signaling pathway to an 'ON' state for good. And that often causes trouble," Peifer says.

"The cancer connection in the signaling pathway we study was first made in colon cancer, one of the most important human malignancies because it is one of the most prevalent," Peifer notes. "It's probably the most prevalent that's not easy preventable. If people didn't smoke, colon cancer might be the most common malignancy."

In the new study, Peifer and his colleagues at UNC and Northwestern University point to another cellular role for APC, one that also may apply to colon cancer. Building on work done by others at Princeton University, they have identified a gene in fruit flies that encodes a second fruit fly APC, Drosophila APC2 . The mutations they made in those genes yielded both surprising and not-so-surprising results.

"We learned, not surprisingly, that if you eliminate the destroyer of Armadillo, its levels go up and you activate the signaling pathway. It confirmed what we thought was true is true," Peifer says.

"We also learned that this pathway doesn't just target the nucleus," the UNC biologist adds. "Signals from APC2 may affect the cytoskeleton, the part of the cellular machinery that forms the cell's skeleton."

The researcher says this finding supports a theory of Stanford University's W. James Nelson that APC mutations' effects on the cytoskeleton may lead to tumors. In the colon, mutations in APC signaling would prevent colon cells from migrating upward from the glandular crypts within the intestinal mucus membrane to the villi, tiny projections on the surface.

"The crypt is an environment where cells are told to proliferate. So if cells are kept in that environment longer, you might get more cell proliferation, possibly leading to tumor formation. This is further evidence for that idea," Peifer says.

Peifer's collaboration with colleagues in The Netherlands has identified two APC protein families in human cells.

"We're now interested in trying to understand how different APC members in fruit fly and mammalian cells might influence the cytoskeleton," the researcher says. Additional studies will involve the crystal structure of beta catenin, recently solved at Stanford University.

"That gives us a 3-dimensional picture of the protein, so we can ask how does our protein dock on other proteins," he says. "And if we understand those interactions, we can go in and block them. And if we do that in colon cells, then we might disrupt tumor development."

He adds: It's terrific to feel like we're really making a genuine impact on clinically relevant work. The work we're doing on understanding this pathway, the precise details of how proteins work and interact, will allow us to conceive rational ways to attack problems in its signaling activity."

Peifer's UNC co-authors include Drs. Brooke M. McCartney, Catherine Kirkpatrick, and Annette Bass. Northwestern University Biochemistry, Microbiology, and Cell Biology collaborators are Drs. Herman A. Dierick, Melissa Moline, and Amy Bejsovec.

The research was funded by grants from the National Institutes of Health, the U.S. Army Breast Cancer Research Program, and the National Science Foundation.


Story Source:

The above story is based on materials provided by University Of North Carolina School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University Of North Carolina School Of Medicine. "Study Of Fruit Flies May Yield New Clues To Colon Cancer Development." ScienceDaily. ScienceDaily, 22 September 1999. <www.sciencedaily.com/releases/1999/09/990922050955.htm>.
University Of North Carolina School Of Medicine. (1999, September 22). Study Of Fruit Flies May Yield New Clues To Colon Cancer Development. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/1999/09/990922050955.htm
University Of North Carolina School Of Medicine. "Study Of Fruit Flies May Yield New Clues To Colon Cancer Development." ScienceDaily. www.sciencedaily.com/releases/1999/09/990922050955.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

House Republicans Vote to Sue Obama Over Healthcare Law

House Republicans Vote to Sue Obama Over Healthcare Law

Reuters - US Online Video (July 31, 2014) The Republican-led House of Representatives votes to sue President Obama, accusing him of overstepping his executive authority in making changes to the Affordable Care Act. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Despite Health Questions, E-Cigs Are Beneficial: Study

Despite Health Questions, E-Cigs Are Beneficial: Study

Newsy (July 31, 2014) Citing 81 previous studies, new research out of London suggests the benefits of smoking e-cigarettes instead of regular ones outweighs the risks. Video provided by Newsy
Powered by NewsLook.com
Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins