Featured Research

from universities, journals, and other organizations

New Target Identified For Chronic Pain Therapy

Date:
November 22, 1999
Source:
National Institute of Neurological Disorders And Stroke
Summary:
Scientists funded by the National Institute of Neurological Disorders and Stroke (NINDS) may soon be able to reduce sensitivity to stimuli that are associated with chronic neuropathic and inflammatory pain by disabling certain nerve cells that send pain signals to the brain.

Scientists funded by the National Institute of Neurological Disorders and Stroke (NINDS) may soon be able to reduce sensitivity to stimuli that are associated with chronic neuropathic and inflammatory pain by disabling certain nerve cells that send pain signals to the brain.

Research reported in the November 19, 1999, issue of Science shows that, in an animal model, combining substance P with the ribosome-inactivating protein saporin (SAP) will inhibit the pain associated with nerve injury when administered before or after the development of neuropathic pain and will significantly reduce sensitivity to stimuli associated with inflammatory pain. Previous data have suggested that in the peripheral nervous system, neuropathic and inflammatory pain arise from different mechanisms and are conveyed to the spinal cord by distinct groups of primary afferent neurons. Study findings suggest that these different types of pain conditions, which can arise via different mechanisms, may be conveyed to the spinal cord by the same substance P receptor-expressing neurons. Further, the study found that, following substance P-SAP treatment, opiates such as morphine remain a viable therapy for breakthrough pain. This discovery could lead to new treatments for chronic pain and the development of more targeted pain-relieving drug therapy.

Researchers at the University of Minnesota injected a combination of substance P (a neurotransmitter known to stimulate pain receptors) and SAP into the dorsal horn of the spinal cord in rats. Receptors for substance P¾ large molecules found on the surface of spinal cord nerve cells¾ served as portals for the compound’s entry. Within days, the targeted neurons, located in the outer layer of the spinal cord along its entire length, absorbed the compound and were neutralized. Results indicate the substance P-SAP treatment reduced the number of spinal cord neurons that express substance P receptor as well as lessened the pain response to thermal and mechanically induced pain following nerve injury, inflammation, and the long-term effects of pain produced by capsaicin injection. The results appear to be long-lasting and do not affect other nerve cells.

Scientists already know that spinal cord neurons that express substance P receptors play a role in pain, but their specific role in signaling¾ relaying or conveying pain signals¾ is not entirely understood.

Investigators believe that these results suggest that this small group of neurons that express substance P play a critical role in communicating chronic pain information from the spinal cord to the thalamus, the brain’s pain center.

The concept of using specific receptors to introduce therapeutic compounds may pave the way for a new pain therapy. Such compounds might be first introduced through a lumbar puncture, a technique commonly used for collecting spinal fluid. The compounds would then serve to relay information through the spinal cord to the thalamus, thus blocking pain signals.

"These findings are extremely important to the study of peripheral and neuropathic pain and our treatment of persons with persistent pain," says Patrick Mantyh, Ph.D., of the University of Minnesota and the Veterans Affairs Medical Center in Minneapolis, who led the study. "We were able to administer a potential treatment and specifically channel it to certain cells, disabling them. We can now focus on the biology of these cells and look at new ways of silencing these cells in other types of persistent pain."

"This discovery is critically important to our understanding of the pain process," says Cheryl Kitt, Ph.D., program director for pain at the NINDS. "Understanding pain pathway changes at the cellular level offers great potential for more effective treatment for pain."

Scientists now need to perform toxicology studies in large animals to demonstrate the safety and efficacy of this treatment in another species. If these studies are successful, approval would be sought to treat terminally ill patients who have severe chronic pain (cancer pain) to determine the extent of the relief of chronic pain in humans.

The NINDS, part of the National Institutes of Health located in Bethesda, Maryland, is the nation’s leading supporter of research on the brain and nervous system and a lead agency in the Congressionally designated Decade of the Brain. The NINDS celebrates its 50th anniversary in the year 2000.


Story Source:

The above story is based on materials provided by National Institute of Neurological Disorders And Stroke. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Neurological Disorders And Stroke. "New Target Identified For Chronic Pain Therapy." ScienceDaily. ScienceDaily, 22 November 1999. <www.sciencedaily.com/releases/1999/11/991122081153.htm>.
National Institute of Neurological Disorders And Stroke. (1999, November 22). New Target Identified For Chronic Pain Therapy. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/1999/11/991122081153.htm
National Institute of Neurological Disorders And Stroke. "New Target Identified For Chronic Pain Therapy." ScienceDaily. www.sciencedaily.com/releases/1999/11/991122081153.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) — President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) — Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) — Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) — President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins