Featured Research

from universities, journals, and other organizations

Researchers Develop Mouse Models Of Neurofibromatosis

Date:
December 13, 1999
Source:
Howard Hughes Medical Institute
Summary:
Two strains of mice genetically engineered to develop neurofibromatosis type 1 (NF1), a tumor-producing hereditary disease of the peripheral nerves, are likely to improve understanding of the progression of NF1 and provide much needed models in which to evaluate therapies for the disease.

December 10, 1999 — Two strains of mice genetically engineered to develop neurofibromatosis type 1 (NF1), a tumor-producing hereditary disease of the peripheral nerves, are likely to improve understanding of the progression of NF1 and provide much needed models in which to evaluate therapies for the disease.

NF1, also called von Recklinghausen's disease, occurs in about one in every 3,500 births. The disorder can cause thousands of painful, disfiguring skin lesions and benign peripheral nerve tumors, called neurofibromas. In some cases, those neurofibromas can turn malignant, rendering the disease potentially deadly.

The research team, which was led by HHMI investigator Tyler Jacks and postdoctoral fellow Karen Cichowski of the Massachusetts Institute of Technology, announced in the December 10, 1999, issue of the journal Science that it had produced one set of mice with benign NF1-related tumors and a second set of mice that developed the malignant tumors associated with the disease.

In developing the mouse models, the researchers began with a previously produced strain of NF1 "heterozygous" mice that were missing one functioning copy of the gene. The NF1 gene codes for the protein neurofibromin, which is normally a tumor suppressor, preventing cells from proliferating. "Since this first heterozygous animal did prove to be cancer-prone, we knew we had a connection to the human disease," said Jacks. "However, those animals did not develop the hallmark lesions of NF1." Mice lacking both copies of the NF1 gene died in utero. In order to create mutant mice that would survive, Jacks and his colleagues produced chimeric mice – animals containing a mix of cells that had either both functioning NF1 genes or no NF1 genes at all.

When the scientists produced the chimeric mice, the animals showed benign neurofibromas, in particular, tumors in deep nerves that are more likely to turn malignant. Importantly, said Jacks, the chimeric mice with higher percentages of NF1-deficient cells showed higher degrees of NF1 pathology.

The researchers also followed the fate of cells lacking NF1 by using a "reporter gene" to track cells missing the NF1 genes. Those experiments revealed that neurofibroma tumors invariably included such NF1-deficient cells.

"This finding was important because these tumors include many types of cells, and it has been unclear whether the hyperproliferative cells – those that comprise the tumor – were NF1-deficient. Our work suggests that the tumor cells are, indeed, NF1-deficient."

Also, said Jacks, electron microscopy of the tumors revealed that they closely resemble human tumors.

"When we showed those microscopy images to neuropathologists, they were very impressed that we had tumors composed of cells characteristic of human tumors," said Jacks. Thus, he said, the mouse model will likely be useful not only in understanding NF1, but in testing gene therapies or drugs to treat the benign tumors.

In creating the mouse model of the malignant tumors, the scientists crossed their heterozygous mice with a strain of mice lacking another tumor-suppressor gene, called p53.

"We found that mice defective in only NF1 or p53 did not produce this type of malignant tumor, but we did see these tumors at high frequency in mice carrying the two mutations together," said Jacks. "Given this high frequency and the rapid development of tumors, we believe we have a robust model of this malignant tumor that will likely be useful in evaluating therapies."

According to Jacks, a number of drug companies are developing drugs to treat cancers by blocking a key cancer gene called Ras, which is also controlled by NF1. Thus, such anti-Ras drugs might be also prove useful in treating NF1.

Of particular interest to Jacks and his colleagues is the observation that the mutant mice showed differences in pathology when the NF1 and p53 mutations were on the same or opposite chromosomes.

"Animals with both mutations on the same chromosome developed tumors much more quickly," he said. "So, we can argue quite strongly that linkage of two genes is important in cancer modeling in mice and perhaps in humans." Such linkage means that damage to or loss of a portion of one chromosome that knocks out both genes may be a significant general cancer-causing mechanism, said Jacks.

In future studies, the researchers plan to test anti-tumor drugs on their mouse models, as well as produce mice in which NF1 is deleted in specific types of nerve cells. Targeting such cells will enable more detailed study of the mechanism of tumor production, said Jacks. The scientists also plan to produce NF1 and p53 mutations in different strains of mice to determine whether other genetic factors might subtly modify the progress of the disease.

"If we find such modifiers, we might better understand the functions of these genes and also why different patients develop different symptoms of the disease," said Jacks.


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Researchers Develop Mouse Models Of Neurofibromatosis." ScienceDaily. ScienceDaily, 13 December 1999. <www.sciencedaily.com/releases/1999/12/991213050949.htm>.
Howard Hughes Medical Institute. (1999, December 13). Researchers Develop Mouse Models Of Neurofibromatosis. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/1999/12/991213050949.htm
Howard Hughes Medical Institute. "Researchers Develop Mouse Models Of Neurofibromatosis." ScienceDaily. www.sciencedaily.com/releases/1999/12/991213050949.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins