Featured Research

from universities, journals, and other organizations

Gene Study Of Hibernation May Aid Organ Transplants, Hypothermia

Date:
February 7, 2000
Source:
North Carolina State University
Summary:
Scientists have long understood why animals hibernate. But how they perform this amazing transformation -- exactly which genes control its onset in autumn and its reversal come spring -- has largely remained a mystery. Now, thanks to a pioneering five-year study by North Carolina State University geneticists, the pieces of that genetic puzzle are starting to come together.

Each winter, hibernating animals perform one of the great physiological marvels of the natural world. Burrowed in their dens, they survive months of bitter cold without food by lowering their heart rates, metabolism and body temperatures to levels that, in humans and other nonhibernating mammals, would be fatal.

Scientists have long understood why animals hibernate. But how they perform this amazing transformation -- exactly which genes control its onset in autumn and its reversal come spring -- has largely remained a mystery.

Now, thanks to a pioneering five-year study by North Carolina State University geneticists, the pieces of that genetic puzzle are starting to come together.

Dr. Matthew Andrews and his research team have identified and mapped two genes for enzymes that play important roles in hibernation in ground squirrels, and have discovered that these genes are nearly identical to ones found in nonhibernating mammals, including humans.

Because the genes are found in all mammals, not just in species that hibernate, the study's findings have implications far beyond the field of zoology, Andrews says.

"If we can identify the enzymes responsible for preserving organs, reducing glucose consumption and maintaining muscle tone during an extreme state like hibernation, physicians could use that knowledge to develop new strategies for prolonging the 'shelf life' of human organs intended for transplants or for helping humans suffering from starvation, muscle atrophy, hypothermia and hypoxia," he explains.

One of the genes identified by Andrews and his research team controls the production of pancreatic triglyceride lipase (PL), an enzyme that breaks up triglycerides -- stored fatty acids -- and converts them into usable fats for fuel in the hibernating ground squirrels. The second gene encodes the production of pyruvate dehydrogenase kinase isozyme 4 (PDK-4), an enzyme that is triggered during times of starvation and helps conserve the body's stores of glucose. Both genes are expressed in the squirrels' hearts at or just before the onset of hibernation.

Andrews' findings also may be of interest to evolutionary biologists. If hibernation is controlled by the differential expression of existing mammalian genes, as the research suggests, then the identification of these genes could provide insight into how other mammals could adapt (or how, long ago, their ancestors did adapt) to extreme environmental changes. In the future, they might even help scientists safely induce a hibernation-like state in astronauts during long-term space travel.

Andrews first reported the identification of the two genes in the Proceedings of the National Academy of Sciences in 1998. Since then, he and his team have mapped the genes, documented more fully how and when they're turned on in hibernating ground squirrels, and how this differs from their expression in nonhibernating mammals. (Pancreatic lipase (PL), for instance, is usually expressed in the pancreas of nonhibernating mammals, not the heart.) Further studies are being conducted on both summer-active and hibernating animals to identify and isolate additional gene sequences.

The study is funded by the North Carolina Biotechnology Center and the U.S. Army Research Office.

-- lucas --

NOTE TO EDITORS: A color photo of Dr. Matthew Andrews holding a hibernating ground squirrel is available at http://www2.ncsu.edu/ncsu/univ_relations/release.html (click on current releases and then on the story headline) or by calling NC State News Services at 919/515-3470. For a copy of Andrews' 1998 peer-reviewed article in the Proceedings of the National Academy of Sciences, contact Tim Lucas at the News Services number, or e-mail him at tim_lucas@ncsu.edu.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "Gene Study Of Hibernation May Aid Organ Transplants, Hypothermia." ScienceDaily. ScienceDaily, 7 February 2000. <www.sciencedaily.com/releases/2000/02/000207073859.htm>.
North Carolina State University. (2000, February 7). Gene Study Of Hibernation May Aid Organ Transplants, Hypothermia. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2000/02/000207073859.htm
North Carolina State University. "Gene Study Of Hibernation May Aid Organ Transplants, Hypothermia." ScienceDaily. www.sciencedaily.com/releases/2000/02/000207073859.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins