Featured Research

from universities, journals, and other organizations

Rocket Science -- Fluorine Enhances Boron Combustion In Energetic Propellants

Date:
February 14, 2000
Source:
University Of Illinois At Urbana-Champaign
Summary:
Recent shock-tube experiments at the University of Illinois have shown that propellants containing fluorine can significantly enhance the combustion of energetic boron particles.

CHAMPAIGN, Ill. -- Recent shock-tube experiments at the University of Illinois have shown that propellants containing fluorine can significantly enhance the combustion of energetic boron particles.

"The number one performance factor for any rocket is the amount of energy obtained per pound of propellant," said Herman Krier, the Richard W. Kritzer Professor of Mechanical and Industrial Engineering at the U. of I. "The more energetic a material is, the less propellant a rocket must carry -- which means it can carry more payload."

Liquid fuels and oxidizers provide more energy per pound than solid propellants, but liquids must be cryogenically cooled, adding to their cost and making them difficult to store. Solid propellants are cheaper to make, and can be stored safely for years -- even under harsh environmental conditions.

Today's solid-fueled rockets use propellants that were developed in the 1960s and '70s. "These materials are safe and reliable, but not extremely energetic," Krier said. "New propellants being developed will likely contain highly energetic metals such as magnesium and boron."

Boron has a low molecular weight and a high energy of combustion, making it an attractive additive for use in rocket propellants, Krier said. "But a thin layer of boron oxide that forms on the particle surface hinders combustion, resulting in long ignition delays. Chemical models have suggested that fluorine, the most reactive of the elements, will attack and remove this oxide coating, thus shortening the time required for ignition and increasing the rate of combustion."

To study the effect of fluorine on boron combustion, Krier and his colleagues -- doctoral candidate Martin Spalding and aeronautical and astronautical engineering professor Rodney Burton -- used the 12-meter shock tube in the U. of I.'s High-Pressure Combustion Laboratory. Boron particles were ignited under high pressures and temperatures in atmospheres consisting of argon and oxygen, mixed with varying amounts of fluorine. Time-resolved spectra of the burning particles were obtained using a streak camera to record the output of a sensitive spectrometer.

"The spectral fingerprints of the reacting molecules allowed us to determine how long it took before the reactions started, identify the specific reactions that occurred, and measure how long it took for the particles to burn," Krier said.

A significant decrease in both the ignition delay time and the total combustion time resulted when a small amount of fluorine was added to the shock tube, Krier said. "Now that we have verified the chemical models, the next step will be to find a safe and effective way of incorporating fluorine into the solid propellant."

The researchers published their findings in the December issue of Combustion and Flame.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Rocket Science -- Fluorine Enhances Boron Combustion In Energetic Propellants." ScienceDaily. ScienceDaily, 14 February 2000. <www.sciencedaily.com/releases/2000/02/000214074518.htm>.
University Of Illinois At Urbana-Champaign. (2000, February 14). Rocket Science -- Fluorine Enhances Boron Combustion In Energetic Propellants. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2000/02/000214074518.htm
University Of Illinois At Urbana-Champaign. "Rocket Science -- Fluorine Enhances Boron Combustion In Energetic Propellants." ScienceDaily. www.sciencedaily.com/releases/2000/02/000214074518.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins