Featured Research

from universities, journals, and other organizations

Researchers Unlock The Mystery Of The Jellybean

Date:
April 17, 2000
Source:
Penn State
Summary:
The association of jellybeans with the Easter season is as commonplace as chocolates on Valentine’s Day and evergreens at Christmas. But most who love munching on the jelly-filled delicacies in the sugar shell know little about the creation and physics of this confectionery marvel.

University Park, Pa. — The association of jellybeans with the Easter season is as commonplace as chocolates on Valentine’s Day and evergreens at Christmas. But most who love munching on the jelly-filled delicacies in the sugar shell know little about the creation and physics of this confectionery marvel.

Gregory Ziegler, associate professor of food science at Penn State University, set out to unlock the mystery of the jellybean last year. Specifically, he sought the answer to the question that has baffled jellybean manufacturers since the candy was first introduced in 1861: why does it take seven long days to produce a single bean?

"We were trying to find out why it takes so long to create a finished, polished jellybean," said Ziegler. "Basically, you’ve got a sugar shell on the outside of a jelly center, and we knew that it takes a few days of aging time for that shell to harden sufficiently to be able to polish it. Our objective was to determine why that process took so long."

In Pennsylvania — a state that accounts for one-fifth of the nation’s $23 billion confectionery industry each year — solving that mystery and developing a more expedient process for creating the perfect jellybean is of significant interest.

According to Ziegler, it was initially presumed that aging was a period of drying — that the sugar shell surrounding the soft starch center simply had to dry before it was hard enough to polish. Polishing involves applying a saturated sugar solution on the rough surface of tumbling beans, which eventually crystallizes solidly enough to be waxed to a smooth gloss typical of jellybeans.

Researchers have tried unsuccessfully for decades to speed up this aging process through artificial drying techniques. Ziegler, however, proposed that the aging process actually required the natural movement of moisture from the shell to the jelly core, which enhances its softness. To remove moisture through a dryer would inhibit this process and result in a different texture to the shell and the hardening of the jelly.

To investigate this theory, Ziegler enlisted the help of Dr. Bruce Balcom, director of the University of New Brunswick’s Magnetic Resonance Imaging (MRI) Research Centre. They were assisted by Penn State graduate student Michelle Troutman, who completed her masters degree work in food science at Penn State last November with a thesis based on this project. Troutman’s participation, including work at New Brunswick, was funded through a fellowship from the Pennsylvania Manufacturing Confectioners’ Association.

The collaborative effort involved using Balcom’s MRI equipment to take real-time, cross-sectional pictures of a newly produced jellybean throughout its aging period. The test revealed what Ziegler suspected: moisture gradually moves in waves from the shell to the center of the bean.

"It’s almost like curing cement," said Ziegler. "It’s not so much the dryness as we initially thought — it’s the curing time. The curing time has two opposite but essential functions: it hardens the shell but softens the center. There is no way to artificially stimulate that process."

These findings leave confectioners with the reality that technology cannot provide a catalyst for the complex evolution of the jellybean. And for the foreseeable future, Ziegler expects the colorful sweets found in abundance at this time of year will continue to be produced in the same deliberate manner as they were when invented more than 140 years ago.

"Somtimes good things just take time," he said.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Researchers Unlock The Mystery Of The Jellybean." ScienceDaily. ScienceDaily, 17 April 2000. <www.sciencedaily.com/releases/2000/04/000417100255.htm>.
Penn State. (2000, April 17). Researchers Unlock The Mystery Of The Jellybean. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2000/04/000417100255.htm
Penn State. "Researchers Unlock The Mystery Of The Jellybean." ScienceDaily. www.sciencedaily.com/releases/2000/04/000417100255.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins