## Featured Research

from universities, journals, and other organizations

# Physicists Find More Precise Gravity Number -- And Weigh The Earth

Date:
May 1, 2000
Source:
University Of Washington
Summary:
It's a smaller world after all -- that is, if new measurements by University of Washington physicists turn out to be correct. Their new calculations for the Earth's mass came from work that could establish the most precise measurement ever achieved of Isaac Newton's gravitational constant.

It's a smaller world after all -- that is, if new measurements by University of Washington physicists turn out to be correct.

Their new calculations for the Earth's mass came from work that could establish the most precise measurement ever achieved of Isaac Newton's gravitational constant.

According to the figures by Jens Gundlach and Stephen Merkowitz, Earth weighs in at 5.972 sextillion (5,972 followed by 18 zeroes) metric tons. Recent textbooks list the weight as 5.98 sextillion metric tons. Either way, that's about 1 trillion metric tons for each person on Earth. Put another way, 1 trillion metric tons is thought to be the total weight of all plant and animal life on the Earth's surface.

Gundlach, a UW research associate physics professor, and Merkowitz, a postdoctoral researcher, report their findings May 1 at a meeting of the American Physical Society in Long Beach, Calif.

"Gravity is the most important large-scale interaction in the universe, there's no doubt about it," Gundlach said. "It is largely responsible for the fate of the universe. Yet it is relatively little understood."

Gundlach uses the relationship between the Earth and sun to illustrate the mighty role of gravity. If the gravitational force that holds the Earth in its orbit around the sun were to be replaced by a steel cable (assuming it could be made with no mass), the cable would have to be two-thirds the diameter of the Earth to do the same job as gravity.

Newton's gravitational constant tells how much gravitational force there is between two masses - the Earth and sun, for instance - separated by a known distance. The gravitational constant along with the speed of light and Planck's constant (a key value in quantum mechanics) are considered the three most fundamental and universal constants in nature. But while measurements of the other two constants have grown continually more precise through the years, the reverse has happened for the gravitational constant, called "Big G" in physics parlance.

In fact, new attempts to measure Big G in the 1990s brought results widely different from the previously accepted figure. That prompted the National Institute of Standards committee that establishes the accepted value to determine that there actually was 12 times more uncertainty about the figure last year than in 1987.

"That is a huge embarrassment for modern physics, where we think we know everything so well and other constants are defined to many, many digits," Gundlach said.

If accepted, the measurement by Gundlach and Merkowitz would reduce the uncertainty by nearly a factor of 100 from the currently accepted figure, making it far more precise than even the 1987 figure. Gundlach notes his numbers could change as additional data are analyzed in preparation for submitting the work for peer review.

To make their measurements, the researchers are using a device called a torsion balance that records nearly imperceptible accelerations from the gravitational effects of four 8.14-kilogram stainless steel balls on a 3- by 1.5-inch gold-coated Pyrex plate just 1.5 millimeters thick. The device, operating inside an old cyclotron hall in the UW nuclear physics laboratory, is similar in nature to one used 200 years ago to make the first Big G measurement. But it is computer controlled and contains numerous mechanical refinements that make the more precise measurement possible.

Gundlach acknowledged that the more precise calculation probably won't mean much to the average person.

"Just because we know the value of G won't make better cell phones," he said. "But it's something mankind should know because it's such a fundamental constant."

Story Source:

The above story is based on materials provided by University Of Washington. Note: Materials may be edited for content and length.

University Of Washington. "Physicists Find More Precise Gravity Number -- And Weigh The Earth." ScienceDaily. ScienceDaily, 1 May 2000. <www.sciencedaily.com/releases/2000/05/000501081530.htm>.
University Of Washington. (2000, May 1). Physicists Find More Precise Gravity Number -- And Weigh The Earth. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2000/05/000501081530.htm
University Of Washington. "Physicists Find More Precise Gravity Number -- And Weigh The Earth." ScienceDaily. www.sciencedaily.com/releases/2000/05/000501081530.htm (accessed July 22, 2014).

## More Matter & Energy News

Tuesday, July 22, 2014

### Featured Research

from universities, journals, and other organizations

### Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

### Government Approves East Coast Oil Exploration

AP (July 18, 2014) — The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Sunken German U-Boat Clearly Visible For First Time

### Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) — The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

### Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) — President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Crude Oil Prices Bounce Back After Falling Below \$100 a Barrel

### Crude Oil Prices Bounce Back After Falling Below \$100 a Barrel

TheStreet (July 16, 2014) — Oil Futures are bouncing back after tumbling below \$100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet

## Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):

Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

## In Other News

... from NewsDaily.com

Save/Print:
Share:

## Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

## Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

## Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web