Featured Research

from universities, journals, and other organizations

NIST/Lucent Team Develops Method For Ultraprecise Optical Frequency Measurements

Date:
May 2, 2000
Source:
National Institute Of Standards And Technology
Summary:
Researchers from the Commerce Department’s National Institute of Standards and Technology and Bell Laboratories of Lucent Technologies have teamed to produce a more precise method for measuring the frequency of visible and infrared light. The new technology may help facilitate the development of future generations of atomic clocks, improve the ability to identify molecules and elements by spectroscopy, and provide more reliable frequency standards for use by the telecommunications and related industries.

April 27, 2000 -- Researchers from the Commerce Department’s National Institute of Standards and Technology and Bell Laboratories of Lucent Technologies have teamed to produce a more precise method for measuring the frequency of visible and infrared light. The new technology may help facilitate the development of future generations of atomic clocks, improve the ability to identify molecules and elements by spectroscopy, and provide more reliable frequency standards for use by the telecommunications and related industries. This technology also provides a new level of control over ultrashort light pulses.

Reported in tomorrow’s Science, the technique uses a single laser to measure optical frequency instead of a cumbersome and expensive multiple laser system. The measurements made by the NIST/Lucent system have a higher level of precision than conventionally derived ones because they are compared to the well-defined primary frequency standard of a cesium-133 atomic clock. Eventually, the researchers believe that the level of precision for their technology will be limited only by the performance of the primary standard itself.

The experiments were conducted at JILA, a joint research endeavor of NIST and the University of Colorado at Boulder.

The researchers "locked" a radio-frequency-clock-stabilized titanium-sapphire laser in a manner that generated a repetitive train of ultrashort optical pulses (referred to as a "repetition frequency"). Each pulse is so short that it contains only about three cycles of light.

The output spectrum of such a laser is a series of sharply defined spectral lines, separated by the repetition frequency. The scientists call this spectrum a "comb" because it has the appearance of a common pocket comb.

Ordinarily, there would be no fixed relationship between the envelopes of the pulses and the wavelength of the laser light, but in this work, the envelope and the wavelength are locked together with a controlled phase relationship. In addition, the repetition rate of the pulses is locked to the standard cesium microwave frequency (9.2 gigahertz). This makes it possible to determine the absolute frequency of each of the "teeth" of the comb, and provides a means of measuring optical frequencies with a single laser.

A visible continuum of lightwave frequencies is generated within a novel air-silica microstructure fiber. Light is very tightly confined to the glass fiber’s solid core by a ring of air holes surrounding the core. This unusual fiber creates an extremely small effective area, possesses special characteristics for light dispersion and keeps light loss to a minimum. This allows for generation of a frequency continuum with only one thousandth of the power previously needed.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST strengthens the U.S. economy and improves the quality of life by working with industry to develop and apply technology, measurements and standards through four partnerships: the Measurement and Standards Laboratories, the Manufacturing Extension Partnership, the Advanced Technology Program, and the Baldrige National Quality Program. For more information about NIST, see the agency’s web site at http://www.nist.gov. JILA’s web site is at http://jilawww.colorado.edu.

Lucent Technologies, headquartered in Murray Hill, N.J., designs and delivers the systems, software, silicon and services for next-generation communications networks for service providers and enterprises. Backed by the research and development of Bell Labs, Lucent focuses on high-growth areas such as optical and wireless networks; Internet infrastructure; communications software; communications semiconductors and optoelectronics; web-based enterprise solutions that link private and public networks; and professional network design and consulting services. For more information on Lucent Technologies and Bell Labs, visit the company’s web site at http://www.lucent.com or the Bell Labs web site at http://www.bell-labs.com.

- 30 -

For more information about NIST, see our web site at http://www.nist.gov.


Story Source:

The above story is based on materials provided by National Institute Of Standards And Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute Of Standards And Technology. "NIST/Lucent Team Develops Method For Ultraprecise Optical Frequency Measurements." ScienceDaily. ScienceDaily, 2 May 2000. <www.sciencedaily.com/releases/2000/05/000501082214.htm>.
National Institute Of Standards And Technology. (2000, May 2). NIST/Lucent Team Develops Method For Ultraprecise Optical Frequency Measurements. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2000/05/000501082214.htm
National Institute Of Standards And Technology. "NIST/Lucent Team Develops Method For Ultraprecise Optical Frequency Measurements." ScienceDaily. www.sciencedaily.com/releases/2000/05/000501082214.htm (accessed September 20, 2014).

Share This



More Matter & Energy News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Newsy (Sep. 18, 2014) Apple's new operating system, iOS 8, comes with Apple's killswitch feature already activated, unlike all the models before it. Video provided by Newsy
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins