Featured Research

from universities, journals, and other organizations

Magnetic Actuation Folds Micro-Parts Into 3-D Structures

Date:
May 3, 2000
Source:
University Of Illinois At Urbana-Champaign
Summary:
A novel fabrication technique developed at the University of Illinois could provide a reliable and robust method for assembling large arrays of three-dimensional microstructures.

A novel fabrication technique developed at the University of Illinois could provide a reliable and robust method for assembling large arrays of three-dimensional microstructures.

Related Articles


"Like origami -- the Japanese art of folding paper into complex shapes -- our technique works by folding together small pieces of material," said Chang Liu, a professor of electrical and computer engineering and director of the Micro Actuators, Sensors and Systems Laboratory at the UI. "But the pieces we work with are very tiny -- about 100 microns on a side -- so we use a magnetic field instead of our fingers to fold them into shape."

To fabricate arrays of 3-D structures, individual components are first cast in place on sacrificial layers using planar deposition. A small amount of magnetic material is electroplated onto each of the parts, which are then freed from the substrate by a highly selective etchant. When a magnetic field is applied, the induced torque causes the pieces to rotate out of the plane on tiny hinges and lock into place.

"By varying the amount of magnetic material attached to the flaps, we can control the speed at which the parts fold into position," Liu said. "This creates a sequential assembly process that can significantly improve the speed and efficiency of fabricating large arrays of 3-D structures."

Magnetic actuation could be used to create arrays of neural probes, micro-optical devices or miniature testing devices for integrated circuits, Liu said. The unique fabrication process also makes possible the development of a modular building block for the construction of a new class of integrated micro-sensors.

"The development of a micro-integrated sensor typically takes many years and costs millions of dollars," Liu said. "As yet, there are no 'off-the-shelf' components to be used in construction, so each sensor must be custom built. To develop sensors faster and cheaper, we need to use standard parts that can be mass produced in a process similar to that used in the integrated circuit industry."

With funding from NASA, Liu has recently teamed up with UI entomologist and neurobiologist Fred Delcomyn to develop a micro-integrated sensor that mimics the action of a hair cell.

"The hair cell is a very fundamental structure consisting of a long cilia attached to a neuron," Liu said. "Nature uses this basic building block in a variety of ways to accomplish such sensing tasks as hearing, balance and touch."

The use of microelectromechanical fabrication techniques offers unique opportunities for creating artificial hair cells with a size scale and frequency response comparable to their biological counterparts, Liu said. The resulting sensors could be used in many applications, including autonomous robots that more fully perceive and respond to their environment.

"The magnetic actuation of hinged, micro-machined structures may provide a type of standard tool box that could dramatically improve the efficiency of modern sensor development," Liu said.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Magnetic Actuation Folds Micro-Parts Into 3-D Structures." ScienceDaily. ScienceDaily, 3 May 2000. <www.sciencedaily.com/releases/2000/05/000502184912.htm>.
University Of Illinois At Urbana-Champaign. (2000, May 3). Magnetic Actuation Folds Micro-Parts Into 3-D Structures. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2000/05/000502184912.htm
University Of Illinois At Urbana-Champaign. "Magnetic Actuation Folds Micro-Parts Into 3-D Structures." ScienceDaily. www.sciencedaily.com/releases/2000/05/000502184912.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com
How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins