Featured Research

from universities, journals, and other organizations

Dwarf Galaxy Provides Clues About Early Universe, Says Team Led By UMass Astronomer

Date:
June 8, 2000
Source:
University Of Massachusetts Amherst
Summary:
A team of researchers led by a University of Massachusetts astronomer has produced the first complete maps of carbon monoxide emission in the interstellar medium of a nearby dwarf irregular galaxy. These observations may provide a unique insight into the formation of stars in the early universe.

AMHERST, Mass. - A team of researchers led by a University of Massachusetts astronomer has produced the first complete maps of carbon monoxide emission in the interstellar medium of a nearby dwarf irregular galaxy. These observations may provide a unique insight into the formation of stars in the early universe. Dwarf irregular galaxies lack an apparent structure or shape, and are significantly smaller than their counterparts. The research was conducted by Christopher L. Taylor of the Five College Radio Astronomy Observatory (FCRAO) at UMass, along with Wilfred Walsh of the Max-Planck Institut in Bonn, Germany, and Susanne Huttemeister and Thomas Fritz of the University of Bonn, Germany. The team presented its findings today at the American Astronomical Society meeting in Rochester, N.Y.

"These observations will be important in understanding how galaxies form and evolve," said Taylor. "The light from distant galaxies can take billions of years to reach the Earth, and shows astronomers how those galaxies looked when the light first started its journey billions of years ago." Thus by looking to ever-more distant galaxies, astronomers look back in time to when the universe was young. The astronomers observed IC 10, a nearby dwarf irregular galaxy only 2.7 million light years (0.82 megaparsecs) distant.

"IC 10 will become a Rosetta stone, helping us interpret the observations of extremely distant galaxies which will become possible with the next generation of millimeter radio telescopes," said Taylor.

Most of the heavy elements in the universe, such as carbon, nitrogen, and oxygen, are created by fusion in the centers of stars. Galaxies in the early universe had not had enough time to create all the heavy elements that exist now. Unfortunately, these distant galaxies are also extremely faint and hard to observe. Because of the deficiency of heavy elements, dwarf irregular galaxies such as IC 10 mimic the conditions in the distant, very young galaxies, but are close enough to be observed in great detail.

"Stars are formed in molecular gas," explained Taylor. "Carbon monoxide isthe most easily observable molecule, so we use it to study the temperature and density of the molecular gas, to understand the conditions needed for stars to form." However, because dwarf irregular galaxies are deficient in carbon and oxygen, observations of carbon monoxide in them are demanding, requiring the best receivers and telescopes, and most of all, a large amount of observing time.

Taylor and his collaborators observed IC 10 at five different wavelengths, including 2.7 mm, 1.3 mm and 0.9 mm, with two different radio telescopes. Carbon monoxide emits at different wavelengths depending upon the density and temperature of the gas, so by combining all the data they collected, the astronomers will be able to determine how the physical conditions in the gas vary at different locations in IC 10. The research team has compared their data to an optical image showing sites of recent star formation, as well as to a map of atomic hydrogen gas. They discovered that the molecular gas generally lies close to the regions of densest atomic hydrogen, as well as near young, recently formed stars. They did find a region with molecular gas that lacks young stars. The astronomers suspect this may be a location for the formation of future generations of stars.

Observations at 2.7 mm were carried out at the FCRAO 14-meter (46-foot) radio telescope in New Salem, in the Quabbin Reservoir watershed. This telescope features a unique detector with 16 receivers, allowing 16 simultaneous observations. This allowed the astronomers to observe, for the first time, the entire galaxy, rather than just a few locations within the galaxy. Without this capability, some of the molecular gas might have been missed. The 1.3-mm and 0.9-mm observations were carried out at the 10-meter (33 feet) Heinrich Hertz Telescope (HHT) of the Submillimeter Telescope Observatory on Mt. Graham, Ariz. Submillimeter observations require excellent weather and can only be performed at dry, high-altitude locations like Mt. Graham. Because of the short wavelengths observed, a submillimeter telescopes requires a very precise antenna. The HHT is the most accurate radio telescope in the world, with no surface irregularities larger than the thickness of a human hair.

FCRAO is operated with the support of a grant from the National Science Foundation.


Story Source:

The above story is based on materials provided by University Of Massachusetts Amherst. Note: Materials may be edited for content and length.


Cite This Page:

University Of Massachusetts Amherst. "Dwarf Galaxy Provides Clues About Early Universe, Says Team Led By UMass Astronomer." ScienceDaily. ScienceDaily, 8 June 2000. <www.sciencedaily.com/releases/2000/06/000607073825.htm>.
University Of Massachusetts Amherst. (2000, June 8). Dwarf Galaxy Provides Clues About Early Universe, Says Team Led By UMass Astronomer. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2000/06/000607073825.htm
University Of Massachusetts Amherst. "Dwarf Galaxy Provides Clues About Early Universe, Says Team Led By UMass Astronomer." ScienceDaily. www.sciencedaily.com/releases/2000/06/000607073825.htm (accessed August 29, 2014).

Share This




More Space & Time News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com
Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins