Featured Research

from universities, journals, and other organizations

Sandia Develops Vertical Cavity Surface Emitting Laser That Promises To Reduce Cost Of Fiber Optics Connections

Date:
June 9, 2000
Source:
Sandia National Laboratories
Summary:
Researchers at the Department of Energy's Sandia National Laboratories have developed the first 1.3-micron electrically pumped vertical cavity surface emitting laser (VCSEL) grown on gallium arsenide. It promises to reduce the cost of high-speed fiber optics connections.

ALBUQUERQUE, N.M. -- Researchers at the Department of Energy's Sandia National Laboratories have developed the first 1.3-micron electrically pumped vertical cavity surface emitting laser (VCSEL) grown on gallium arsenide. It promises to reduce the cost of high-speed fiber optics connections.

Related Articles


Working through a cooperative research and development agreement (CRADA) with Cielo Communications, Inc., Sandia developed the gallium arsenide-based VCSEL, which will be cheaper and easier to build than standard edge emitting lasers used in current high-speed communications.

"This VCSEL will meet the needs of high speed fiber optics connections of the future," says Peter Esherick, manager of the Compound Semiconductor Materials and Processes Department at Sandia. "We expect there to be great excitement over the device -- fueled by the rapid expansion of Internet use and craving for faster Internet access."

The new 1.3-micron VCSEL is made mostly from stacks of layers of semiconductor materials common in shorter wavelength lasers -- aluminum gallium arsenide and gallium arsenide. The Sandia team added to this structure a small amount of the new material, indium gallium arsenide nitride (InGaAsN), which was initially developed by Hitachi of Japan in the mid 1990s. The InGaAsN causes the VCSEL's operating wavelength to fall into a range that makes it useable in high-speed Internet connections.

Esherick says laboratories around the world have been in a "horserace to be the first with the 1.3-micron VCSEL on gallium arsenide substrates." Cielo teamed with Sandia through a CRADA last year to research several compound semiconductor alloys in an effort to find the one that achieved the 1.3-micron goal. In May, Sandia researchers came up with a materials combination and materials growth technique that hit the target. The research findings were submitted June 1 to Electronic Letters for publication.

The laser is the light source that transmits information down optical fibers. Two types of semiconductor lasers are used in high-speed data and telecommunications fiber optics -- the edge emitter and the VCSEL. In the edge emitter, which has traditionally dominated the semiconductor laser market, photons are emitted out of one edge of the semiconductor wafer after rebounding off mirrors that have been literally cleaved out of the crystalline substrate.

In the VCSEL, laser photons bounce between mirrors grown into the structure and then emit vertically from the wafer surface. VCSELs, which are grown by the thousands on a single wafer, have significant advantages over edge-emitting lasers in the areas of lower manufacturing, packaging, alignment, and testing costs, as well as lower power dissipation and higher reliability.

VCSELs made of combinations of aluminum gallium arsenide and gallium arsenide have been used in the shorter wavelength window of 850 nanometers for local connections. However, because none existed that could work in the 1.3-micron window required for high-speed, long-distance communications, the optical networking industry turned to the more expensive and complicated edge emitting lasers.

Sandia researchers successfully built an edge emitter using InGaAsN early this year, giving them the opportunity to characterize the material's properties and quality. They now have gone to the next step with development of the first InGaAsN VCSEL.

"The key to making this work was to optimize the material quality of the InGaAsN and to make subtle changes to the rest of the structure," says John Klem, Sandia researcher working on the VCSEL project. "Once we had the high quality InGaAsN in hand, our extensive experience with shorter wavelength VCSELs allowed us to quickly produce the full 1.3-micron device."

Mike Cowley, president and CEO of Cielo Communications located in Broomfield, Colo., says the InGaAsN VCSEL is an "extremely exciting announcement for Cielo, Sandia, and the optical networking industry as a whole."

"VCSEL technology has historically provided the most cost-effective optical link solution for high-bandwidth applications, proven in recent years by their rapid adoption over edge-emitting lasers in the data communications market," he says. "The significant cost reduction afforded by the 1.3-micron VCSELs will make increased bandwidth more accessible and cost effective for the telecommunications and Internet infrastructure."

Esherick says in addition to the obvious benefits of 1.3-micron VCSELs for the civilian telecommunication markets, there are equally important benefits for DOE's defense applications.

"What's exciting for us is that the 1.3-micron light can be transmitted through silicon -- the silicon is transparent at that wavelength," he says. "The additional flexibility this offers for integrating photonic devices with silicon based microsystems will have significant implications for national security systems."


Story Source:

The above story is based on materials provided by Sandia National Laboratories. Note: Materials may be edited for content and length.


Cite This Page:

Sandia National Laboratories. "Sandia Develops Vertical Cavity Surface Emitting Laser That Promises To Reduce Cost Of Fiber Optics Connections." ScienceDaily. ScienceDaily, 9 June 2000. <www.sciencedaily.com/releases/2000/06/000608072327.htm>.
Sandia National Laboratories. (2000, June 9). Sandia Develops Vertical Cavity Surface Emitting Laser That Promises To Reduce Cost Of Fiber Optics Connections. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2000/06/000608072327.htm
Sandia National Laboratories. "Sandia Develops Vertical Cavity Surface Emitting Laser That Promises To Reduce Cost Of Fiber Optics Connections." ScienceDaily. www.sciencedaily.com/releases/2000/06/000608072327.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins