Featured Research

from universities, journals, and other organizations

Northwestern Chemist Develops Nanoplotter With Parallel Writing Capabilities

Date:
June 16, 2000
Source:
Northwestern University
Summary:
In a paper to be published in the June 9 issue of the journal Science, researchers at Northwestern University demonstrate an eight-pen nanoplotter capable of simultaneously creating eight identical patterns drawn with tiny lines of molecular ink. Each line is only 30 molecules wide and one molecule high.

EVANSTON, Ill. -- In a paper to be published in the June 9 issue of the journal Science, researchers at Northwestern University demonstrate an eight-pen nanoplotter capable of simultaneously creating eight identical patterns drawn with tiny lines of molecular ink. Each line is only 30 molecules wide and one molecule high.

This breakthrough transforms dip-pen nanolithography (Science, Oct. 15, 1999) from a serial process into a parallel process, paving the way to making it competitive with other optical and stamping lithographic methods used for patterning large areas on metal and semiconductor substrates, including silicon wafers.

"Our multiple-pen, parallel process nanoplotter gives the nanotechnologist a powerful new tool," said Chad Mirkin, George B. Rathmann Professor of Chemistry. "The miniaturization of the plotter writing technique opens up exciting avenues of doing things differently, better and on a much smaller scale than they are today."

Mirkin and fellow author Seunghun Hong, a postdoctoral researcher at Northwestern, report that the nanoplotter could be equipped with a significantly greater number of pens than a mere eight. The technology should be able to support hundreds, or even a thousand, of tiny nanopens working together at the same time to miniaturize electronic circuits, pattern precise arrays of organic and biomolecules such as DNA and put thousands of different medical sensors on an area much tinier than the head of a pin.

A major limitation of other scanning probe lithography (SPL) methods is that contact between the tip and the substrate (the writing surface) changes the line width and quality of each patterned structure. Therefore, each tip requires a separate feedback system in order to control each line, which means a large amount of expensive and complex instrumentation.

Mirkin's parallel nanoplotter, however, produces consistent line widths with multiple pens and requires only one feedback system for the entire device. The reason for this lies in a tiny drop of water.

In dip-pen nanolithography (DPN), "inks" of organic molecules are applied to an atomic force microscope (AFM), which serves as the writing tool. The molecular ink then is deposited onto an underlying substrate, or "paper," via a tiny capillary in the water droplet that forms naturally at the tip. DPN is a nano-version of the 4,000-year-old quill pen.

When taking the DPN plotter to a parallel process, Mirkin's team made an important scientific discovery. When the writing tips were applied to the substrate using different contact forces, the pens still produced identical dots and lines, with respect to diameter and line width. In other words, with increased pressure, only the water at the AFM tip spreads out, but the width of the nanocapillary, through which the ink flows, remains constant.

This discovery means that only one pen of the multi-pen device needs to be "smart" or have its tip equipped with a feedback system. This pen is called the imaging tip and is used for both imaging and writing. As it patterns an area, sensors in the imaging tip communicate with the customized computer software that drives the nanoplotter. In the case of the eight-pen nanoplotter, the other seven writing tips are passive and follow the lead of the pen with the imaging tip, drawing identical patterns a fixed distance apart.

Mirkin and Hong demonstrated the nanoplotter's parallel writing capability by first drawing two squares using the same ink, then two squares made of two different inks, and finally drawing eight identical patterns -- a set of a dot, a line, an octagon and a square -- made using the same ink. In each demonstration, the patterns were perfectly aligned with respect to each other.

The nanoplotter also can be used in a serial fashion to create nanostructures made up of different inks, one ink being added after another to build the final structure.

In addition to requiring only one feedback system, Mirkin's nanoplotter has other advantages. It can be automated, it uses a relatively inexpensive tool (an atomic force microscope) that is common in the laboratories of companies and universities, and it works under normal atmospheric conditions as opposed to a billion-dollar semiconductor fab line.

"Ideally, we want to have total control over the chemical composition, or architecture, of the nanostructures we build down to the sub-10 nanometer regime," said Mirkin, also director of Northwestern's Institute for Nanotechnology and Center for Nanofabrication and Molecular Self-Assembly. "It's a level of refinement that will open the doors to remarkable scientific discovery and the realization of exciting new technologies. The parallel process nanoplotter takes us closer to our goal."

Mirkin's next step is to expand the current nanoplotter's capabilities. He hopes to have a working 50-pen nanoplotter by the end of next year.

"It soon will be possible to pattern one master plate with thousands of different organic nanostructures, each structure designed to react with a certain disease agent, for example," said Mirkin. "That's what is exciting about this -- no other method exists to do this on such a small scale."

In the case of biomolecules like DNA, it will be possible to generate ultrahigh density combinatorial arrays that could be quite useful in the genomics and medical diagnostics industries. Such arrays are currently generated via techniques with much lower resolution than DPN.

The research was funded by the U.S. Air Force Office of Scientific Research, the Defense Advanced Projects Research Agency and the National Science Foundation-funded Northwestern University Materials Research Center.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Northwestern Chemist Develops Nanoplotter With Parallel Writing Capabilities." ScienceDaily. ScienceDaily, 16 June 2000. <www.sciencedaily.com/releases/2000/06/000612084504.htm>.
Northwestern University. (2000, June 16). Northwestern Chemist Develops Nanoplotter With Parallel Writing Capabilities. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2000/06/000612084504.htm
Northwestern University. "Northwestern Chemist Develops Nanoplotter With Parallel Writing Capabilities." ScienceDaily. www.sciencedaily.com/releases/2000/06/000612084504.htm (accessed July 26, 2014).

Share This




More Matter & Energy News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins