Featured Research

from universities, journals, and other organizations

New Rocket Technology Could Cut Mars Travel Time

Date:
June 14, 2000
Source:
National Aeronautics And Space Administration
Summary:
An agreement to collaborate on development of an advanced rocket technology that could cut in half the time required to reach Mars, opening the solar system to human exploration in the next decade, has been signed by NASA's Johnson Space Center, Houston, TX, and MSE Technology Applications Inc., Butte, MT.

An agreement to collaborate on development of an advanced rocket technology that could cut in half the time required to reach Mars, opening the solar system to human exploration in the next decade, has been signed by NASA's Johnson Space Center, Houston, TX, and MSE Technology Applications Inc., Butte, MT.

Related Articles


The technology could reduce astronauts' total exposure to space radiation and lessen time spent in weightlessness, perhaps minimizing bone and muscle mass loss and circulatory changes.

Called the Variable Specific Impulse Magnetoplasma Rocket (VASIMR), the technology has been under development at Johnson's Advanced Space Propulsion Laboratory. The laboratory director is Franklin Chang-Diaz, a NASA astronaut who holds a doctorate in applied plasma physics and fusion technology from the Massachusetts Institute of Technology, Cambridge.

Chang-Diaz, who began working on the plasma rocket in 1979, said, "A precursor to fusion rockets, the VASIMR provides a power-rich, fast-propulsion architecture."

Plasma, sometimes called the fourth state of matter, is an ionized (or electrically charged) gas made up of atoms stripped of some of their electrons. Stars are made of plasma. It is gas heated to extreme temperatures, millions of degrees. No known material could withstand these temperatures. Fortunately, plasma is a good electrical conductor. This property allows it to be held, guided and accelerated by properly designed magnetic fields.

The VASIMR engine consists of three linked magnetic cells. The forward cell handles the main injection of propellant gas and its ionization. The central cell acts as an amplifier to further heat the plasma. The aft cell is a magnetic nozzle, which converts the energy of the fluid into directed flow.

Neutral gas, typically hydrogen, is injected at the forward cell and ionized. The resulting plasma is electromagnetically energized in the central cell by ion cyclotron resonance heating. In this process radio waves give their energy to the plasma, heating it in a manner similar to the way a microwave oven works.

After heating, the plasma is magnetically exhausted at the aft cell to provide modulated thrust. The aft cell is a magnetic nozzle, which converts the energy of the plasma into velocity of the jet exhaust, while protecting any nearby structure and ensuring efficient plasma detachment from the magnetic field.

A key to the technology is the capability to vary, or modulate, the plasma exhaust to maintain optimal propulsive efficiency. This feature is like an automobile's transmission which best uses the power of the engine, either for speed when driving on a level highway, or for torque over hilly terrain.

On a mission to Mars, such a rocket would continuously accelerate through the first half of its voyage, then reverse its attitude and slow down during the second half. The flight could take slightly over three months. A conventional chemical mission would take seven to eight months and involve long periods of unpowered drift en route.

There are also potential applications for the technology in the commercial sector. A variable-exhaust plasma rocket would provide an important operational flexibility in the positioning of satellites in Earth orbit.

Several new technologies are being developed for the concept, Chang-Diaz said. They include magnets that are super-conducting at space temperatures, compact power generation equipment, and compact and robust radio-frequency systems for plasma generation and heating.

Coordinated by Johnson's Office of Technology Transfer and Commercialization, the Space Act Agreement calls for a joint collaborative effort to develop advanced propulsion technologies, with no money exchanged between the two parties. Such agreements are part of NASA's continuing effort to transfer benefits of public research and development to the private sector.

- end -

Editors Note: Images associated with this release are available on the Internet at:

http://spaceflight.nasa.gov/mars/technology/propulsion/aspl/


Story Source:

The above story is based on materials provided by National Aeronautics And Space Administration. Note: Materials may be edited for content and length.


Cite This Page:

National Aeronautics And Space Administration. "New Rocket Technology Could Cut Mars Travel Time." ScienceDaily. ScienceDaily, 14 June 2000. <www.sciencedaily.com/releases/2000/06/000614075447.htm>.
National Aeronautics And Space Administration. (2000, June 14). New Rocket Technology Could Cut Mars Travel Time. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2000/06/000614075447.htm
National Aeronautics And Space Administration. "New Rocket Technology Could Cut Mars Travel Time." ScienceDaily. www.sciencedaily.com/releases/2000/06/000614075447.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Space & Time News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA Holds Memorial to Remember Astronauts

NASA Holds Memorial to Remember Astronauts

AP (Jan. 29, 2015) NASA is remembering 17 astronauts who were killed in the line of duty and dozens more who have died since the agency&apos;s beginning. A remembrance ceremony was held Thursday at NASA&apos;s Marshall Space Flight Center in Alabama. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Asteroid's Moon Spotted During Earth Flyby

Asteroid's Moon Spotted During Earth Flyby

Rumble (Jan. 27, 2015) Scientists working with NASA&apos;s Deep Space Network antenna at Goldstone, California discovered an unexpected moon while observing asteroid 2004 BL86 during its recent flyby past Earth. Credit to &apos;NASA JPL&apos;. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Mars Rover Opportunity Celebrates 11-Year Anniversary

Mars Rover Opportunity Celebrates 11-Year Anniversary

Rumble (Jan. 26, 2015) Eleven years ago NASA&apos;s Opportunity rover touched down on Mars for what was only supposed to be a 90-day mission. Since then it has traveled 25.9 miles (41.7 kilometers), further than any other off-Earth surface vehicle has ever driven. Credit to &apos;NASA&apos;. Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins