Featured Research

from universities, journals, and other organizations

Meteorite Research Indicates Mars Had Earth-Like Oceans

Date:
June 26, 2000
Source:
Arizona State University, College Of Liberal Arts And Science
Summary:
Thanks to NASA’s unmanned planetary exploration program, evidence of the existence of past oceans on Mars has been accumulating for years, but no one had ever been able to say what the overall chemical composition of those oceans might actually have been like – until now.

Thanks to NASA’s unmanned planetary exploration program, evidence of the existence of past oceans on Mars has been accumulating for years, but no one had ever been able to say what the overall chemical composition of those oceans might actually have been like – until now.

A recent analysis of the interior of a 1.2 billion-year-old Martian meteorite known as the Nakhla Meteorite has shown the presence of water-soluble ions that are thought to have been deposited in cracks by evaporating brine, according to a study by Arizona State University Regents Professor of Chemistry and Geology Carleton Moore, Douglas Sawyer of Scottsdale Community College, ASU graduate student Michael McGehee and Julie Canepa of Los Alamos National Laboratory. The finding, announced in the July issue of the journal Meteoritics and Planetary Science, indicates that ancient Martian oceans had a chemical composition similar in variety and concentration to Earth oceans.

“We have concluded that we have extracted salts that were originally present in Martian water,” said Moore. “The salts we found mimic the salts in Earth’s ocean fairly closely.”

Moore, who is the director of the ASU Meteorite Center, decided to examine the ion content of Martian meteorites in ASU’s sizable meteorite collection, when he noticed an oddity in chemical analyses done by Canepa, then a graduate student at ASU, 15 years ago.

“She studied chlorine and sulfur in basalts from all over the solar system, including the moon, the Earth, and the meteorites. At the time, we didn’t realize that some of the meteorite basalts came from Mars. Then one day I realized that some of the meteorites were high in chlorine and some were low in chlorine. When I checked on it, it turned out that all the high chlorine meteorites were Martian meteorites and the low chlorine meteorites were all asteroidal.”

Then the now-famous study of Martian meteorite ALH48001 helped Moore make a second connection: “When the study of this meteorite revealed not just possible evidence of life but also the presence of salts, I said to myself ‘Aha! Perhaps our meteorites’ chlorine is the remains of salt that had gotten into the meteorites.’ If this was so, it would most likely be from salt water that had leaked in through cracks in the Martian rock the meteorites came from.”

Moore chose the Nakhla meteorite to test, since it had the highest chlorine content of all those in the survey. Nakhla is named for El-Nakhla in northern Egypt, where it was found following a meteorite shower in 1911.

“We had a very nice piece of the Nakhla meteorite, about the size of a golf ball so that there was a clean, uncontaminated interior for us to study,” Moore said. Sawyer and McGehee prepared the meteorite and carefully drilled into its interior so to get a convincingly uncontaminated sample.

Using an ion chromatograph first on the sample and then on water to which the sample was exposed later, Moore tested for chlorine in both. The results showed that a high percentage of the element present was water soluble and therefore had probably originated from a water solution – from salt water.

“Then we tested for the other elements and we found the highest concentrations of negative ions were chloride, sulfate, fluoride, and a little dissolved silica , and, in positive ions, sodium, magnesium and calcium,” Moore said.

“The elements in highest abundance were sodium and chloride – like the salt water on Earth. In ocean water, these are the predominant ionic elements. We are interpreting the elements that we have extracted as having come from an early Martian ocean.”

The only significant difference Moore found between the ionic elements found in the Martian rock and those found in Earth ocean water was the abundance of calcium, which was significantly higher in the Nakhla meteorite than in sea water. Moore points out, however, that the lower calcium concentration in seawater may be due to the mineral being removed biologically by plants, corals and shellfish. When the Nakhla meteorite left Mars 1.2 billion years ago, life on Earth had not yet evolved to these higher forms (shells only appear in the fossil record about 600 million years ago).

To Moore, the finding is interesting because it implies not just a chemical similarity between the planets that may improve the likelihood of finding life on Mars, but also because it provides a window of sorts into the Earth’s own past.

“There was apparently a uniformity between the planets. The inference that the early Martian ocean was very similar to our current ocean also implies that the early Earth’s ocean may have been very similar to what it is today. This is a clue to what it might have been.”

Photos available at: http://clasdean.la.asu.edu/news/images/marsocean/


Story Source:

The above story is based on materials provided by Arizona State University, College Of Liberal Arts And Science. Note: Materials may be edited for content and length.


Cite This Page:

Arizona State University, College Of Liberal Arts And Science. "Meteorite Research Indicates Mars Had Earth-Like Oceans." ScienceDaily. ScienceDaily, 26 June 2000. <www.sciencedaily.com/releases/2000/06/000625231853.htm>.
Arizona State University, College Of Liberal Arts And Science. (2000, June 26). Meteorite Research Indicates Mars Had Earth-Like Oceans. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2000/06/000625231853.htm
Arizona State University, College Of Liberal Arts And Science. "Meteorite Research Indicates Mars Had Earth-Like Oceans." ScienceDaily. www.sciencedaily.com/releases/2000/06/000625231853.htm (accessed July 25, 2014).

Share This




More Space & Time News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com
Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins