Featured Research

from universities, journals, and other organizations

Space Experiments Are Key To Better Crystal-Growth Modeling

Date:
August 18, 2000
Source:
Purdue University
Summary:
Information gleaned from space experiments is enabling a Purdue University engineering professor and his graduate students to design new software aimed at manufacturing superior crystals for electronics and other industrial applications.

WEST LAFAYETTE, Ind. – Information gleaned from space experiments is enabling a Purdue University engineering professor and his graduate students to design new software aimed at manufacturing superior crystals for electronics and other industrial applications.

Better crystals would improve the quality of electronic hardware, including computers, and enable engineers to design superior alloys for a wide range of applications.

Because gravity masks the fine details of how crystals form, making them in space in the near-absence of gravity is uncovering information critical to designing better crystals and alloys. The earth-grown crystals are fundamentally subjected to the same molecular effects as those grown in space, but the effects can only be studied precisely in the low gravity of space. Those details are then incorporated into mathematical models that might ultimately be used to manufacture tailor-made crystals perfectly suited for specific applications.

"The goal is to be able to grow materials to exact specifications," says Suresh Garimella, an associate professor of mechanical engineering at Purdue. Garimella has designed the new software with the help of data from French-built crystal-growth experiments flown on four space shuttle flights.

"Our model predicts the experiments very well, " says Garimella, who will discuss new findings about the work during an international conference this month. The ultimate goal, he says, is to be able to custom-design better materials without needing elaborate space-based research.

"It would be wonderful if you never had to do any experiments and you could just use computer programs to predict everything," Garimella says. "But to develop such computer programs, you need to first establish confidence in them by comparing their predictions to the actual results seen in experiments, and that's the stage where we are now."

Findings from his research will be detailed in a scientific paper to be presented on Aug. 23, during the Ninth Conference on Modeling of Casting, Welding and Advanced Solidification Processes. The conference, in Aachen, Germany, is sponsored by the United Engineering Foundation, a non-profit organization based in New York that provides grants for the advancement of engineering.

Liquids, such as water or molten metals, become crystalline solids as they are cooled. Garimella is using revelations about the physics of that crystal "growth" to write computer programs for new models based on mathematical equations. His most recent model has been shown to accurately predict the final characteristics of crystals, given certain processing conditions such as the temperature at which the crystallizing liquid is cooled, how fast it is cooled and various material properties, including its melting point.

The Purdue engineer uses data from a French-designed experiment, called MEPHISTO, an acronym for Materiel pour L'Etudes des Phenomenes Interessant la Solidification sur Terre et en Orbite. The English translation is Materials for the Study of Interesting Phenomena of Solidification on Earth and in Orbit.

"We couldn't do these experiments on Earth because gravity is so strong," Garimella says. Gravity causes liquids to flow in convection currents, in which lighter materials rise and heavier materials fall. The movement makes it difficult to analyze how liquid molecules turn into solid, crystalline materials.

"All you see are the effects of gravity, essentially," Garimella says. "What is helpful is if you can take out gravity and study how a liquid molecule becomes solid in the absence of gravity. The Holy Grail is to be able to predict what kind of solid will form, given certain processing conditions."

During the past four years, Garimella has been developing mathematical models to do just that. The complex models show how crystals grow at the microscopic level.

The research has revealed a surprising detail: Scientists have known that the crystalline surface where solid first starts forming from liquid has a curving, concave shape. In crystals grown on Earth, that curvature is much more pronounced, and Garimella has found that the nature of the curvature has a strong effect on the subsequent growth of the crystalline solid, which can then be predicted accurately with mathematical models.

"We are in the forefront of developing those models and making them better," Garimella says, noting that models currently available to industry do not capture enough of the physics of crystal formation. "We model it from a fundamental physics point of view," he says.

"Obviously, industry makes pretty good silicon crystals now, otherwise computer technology wouldn't be where it is today," he says. "However, to go from 99 percent purity, to 99.999 percent purity, we need to know a lot more. The MEPHISTO effort was designed to understand some of the things that will help us make even purer crystals."

After the crystals were grown during space shuttle missions, they were studied by scientists at the University of Florida, who provided raw data for the models developed at Purdue.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Space Experiments Are Key To Better Crystal-Growth Modeling." ScienceDaily. ScienceDaily, 18 August 2000. <www.sciencedaily.com/releases/2000/08/000811065900.htm>.
Purdue University. (2000, August 18). Space Experiments Are Key To Better Crystal-Growth Modeling. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2000/08/000811065900.htm
Purdue University. "Space Experiments Are Key To Better Crystal-Growth Modeling." ScienceDaily. www.sciencedaily.com/releases/2000/08/000811065900.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins